Abstract

In this paper, optical properties and coupling conditions for microdisk and microgear resonators are investigated under either pulsed or continuous wave excitation. Results for optimal excitation of microgear resonators in silicon-on-insulator technology are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
    [CrossRef]
  2. T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
    [CrossRef]
  3. L. L. Buhl, and T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
    [CrossRef]
  4. M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
    [CrossRef]
  5. M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
    [CrossRef]
  6. L. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82, 319-321 (2003).
    [CrossRef]
  7. M. Fujita and T. Baba, "Proposal and finite-difference time-domain simulation of whispering galley mode microgear cavity," IEEE J. Quantum Electron. 37, 1253-1258 (2001).
    [CrossRef]
  8. M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
    [CrossRef]
  9. A. Morand, K. Phan Huy, Y. Desieres, and P. Benech, "Analytical study of the microdisk’s coupling with a waveguide based on the perturbation theory," J. Lightwave Technol. 22, 827-832 (2004).
    [CrossRef]
  10. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
    [CrossRef]
  11. K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
    [CrossRef]
  12. K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
    [CrossRef]
  13. FullWAVE by RSoft Design Group Inc., ver. 3.0, single license (2005).
  14. OptiFDTD by Optiwave Corp., ver. 6.0, single license (2005).
  15. C. Manalatou, H. A. Haus, Passive components for dense optical integration, Kluwer Academic Publ., 2002.
    [CrossRef]
  16. B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]

2005

K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

2004

K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
[CrossRef]

A. Morand, K. Phan Huy, Y. Desieres, and P. Benech, "Analytical study of the microdisk’s coupling with a waveguide based on the perturbation theory," J. Lightwave Technol. 22, 827-832 (2004).
[CrossRef]

2003

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

L. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82, 319-321 (2003).
[CrossRef]

2002

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

2001

M. Fujita and T. Baba, "Proposal and finite-difference time-domain simulation of whispering galley mode microgear cavity," IEEE J. Quantum Electron. 37, 1253-1258 (2001).
[CrossRef]

2000

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

1998

M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
[CrossRef]

1997

L. L. Buhl, and T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Baba, T.

T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

M. Fujita and T. Baba, "Proposal and finite-difference time-domain simulation of whispering galley mode microgear cavity," IEEE J. Quantum Electron. 37, 1253-1258 (2001).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
[CrossRef]

L. L. Buhl, and T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Benech, P.

K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
[CrossRef]

A. Morand, K. Phan Huy, Y. Desieres, and P. Benech, "Analytical study of the microdisk’s coupling with a waveguide based on the perturbation theory," J. Lightwave Technol. 22, 827-832 (2004).
[CrossRef]

Buhl, L. L.

L. L. Buhl, and T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Chu, S.T.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Desieres, Y.

Foresi, J.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Fujita, M.

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

M. Fujita and T. Baba, "Proposal and finite-difference time-domain simulation of whispering galley mode microgear cavity," IEEE J. Quantum Electron. 37, 1253-1258 (2001).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
[CrossRef]

Haus, H.A.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Hu, E.

L. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82, 319-321 (2003).
[CrossRef]

Inoshita, K.

M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
[CrossRef]

Laine, J.P.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Little, B. E.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Morand, A.

K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
[CrossRef]

A. Morand, K. Phan Huy, Y. Desieres, and P. Benech, "Analytical study of the microdisk’s coupling with a waveguide based on the perturbation theory," J. Lightwave Technol. 22, 827-832 (2004).
[CrossRef]

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Nozaki, K.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Phan Huy, K.

K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
[CrossRef]

A. Morand, K. Phan Huy, Y. Desieres, and P. Benech, "Analytical study of the microdisk’s coupling with a waveguide based on the perturbation theory," J. Lightwave Technol. 22, 827-832 (2004).
[CrossRef]

Sano, D.

T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Ushigome, R.

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

Zhang, L.

L. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82, 319-321 (2003).
[CrossRef]

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan., "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

L. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82, 319-321 (2003).
[CrossRef]

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Electron. Lett.

M. Fujita, K. Inoshita, and T. Baba, "Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser," Electron. Lett. 34, 278-279 (1998).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

IEEE J. Lightwave Technol.

B. E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.P. Laine, "Microring Resonator Channel Dropping Filters", IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

IEEE J. Quantum Electron.

K. Phan Huy, A. Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

M. Fujita and T. Baba, "Proposal and finite-difference time-domain simulation of whispering galley mode microgear cavity," IEEE J. Quantum Electron. 37, 1253-1258 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi periodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

L. L. Buhl, and T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

J. Lightwave Technol.

Proc. SPIE

K. Phan Huy, A. Morand, and P. Benech, "Analytical study of whispering gallery mode in 2D microgear cavity," in Integrated Optics and Photonic Integrated Circuits, G.C. Righini and S. Honkanen Eds., Proc. SPIE 5451, 284-292 (2004).
[CrossRef]

Other

FullWAVE by RSoft Design Group Inc., ver. 3.0, single license (2005).

OptiFDTD by Optiwave Corp., ver. 6.0, single license (2005).

C. Manalatou, H. A. Haus, Passive components for dense optical integration, Kluwer Academic Publ., 2002.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Microdisk and (b) microgear resonator coupled to the external waveguide, R being the internal radius.

Fig. 2.
Fig. 2.

(a) WGM peaks in microdisk and (b) microgear resonator coupled to the input waveguide.

Fig. 3.
Fig. 3.

Resonance wavelength versus microgear internal radius.

Fig. 4.
Fig. 4.

Coupling dynamics versus gap for microdisk and microgear structures (a) and for both technologies (b).

Fig. 5.
Fig. 5.

Resonance wavelength as a function of grating height for InP technology.

Fig. 6.
Fig. 6.

Quality factor versus microgear grating height for (a) both polarizations in InP and (b) InP and SOI technologies.

Fig. 7.
Fig. 7.

Quality factor versus azimuthal mode order for (a) InP microcavities and (b) different microgear technologies.

Fig. 8.
Fig. 8.

Quality factor as a function of gap for both InP resonators.

Fig. 9.
Fig. 9.

Possible rotation misalignment of microgear resonator with respect to the external waveguide.

Fig. 10.
Fig. 10.

Coupling time versus rotation angle for InP and SOI microgear.

Fig. 11.
Fig. 11.

Quality factor versus rotation angle.

Fig. 12.
Fig. 12.

Microdisk (a) and microgear (b) coupled to external input and output waveguides.

Fig. 13.
Fig. 13.

Two coupled microgear resonators with an input waveguide.

Fig. 14.
Fig. 14.

3D view of power coupled in two InP coupled microgear resonators.

Fig. 15.
Fig. 15.

2D view of two coupled microgear resonators in SOI technology.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = 2 m
Q = λ RES 2 δλ

Metrics