Abstract

We demonstrate the suitability of fiber-generated entangled photon pairs for practical quantum communications in the telecom band by measuring their properties with superconducting single-photon detectors that produce negligible dark counts. The photon pairs are created in approximately 5-ps duration windows at 50 MHz rate while the detectors are operated in ungated free running mode. We obtain a coincidence to accidental-coincidence ratio >80 with raw photon-counting data, i.e., without making any post-measurement corrections. Using a previously demonstrated counter-propagating scheme we also produce polarizationentangled photon pairs at 50-MHz rate, which in coincidence detection directly yield two-photon interference with a fringe visibility >98%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
    [CrossRef]
  2. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef] [PubMed]
  3. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544(2005).
    [CrossRef] [PubMed]
  4. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  5. H. Takesue and K. Inoue, "1.5-um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832 (2005).
    [CrossRef] [PubMed]
  6. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
    [CrossRef]
  7. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef] [PubMed]
  8. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
    [CrossRef]
  9. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
  10. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, "781 Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett. 31, 444 (2006).
    [CrossRef] [PubMed]
  11. M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
    [CrossRef]
  12. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846 (2005).
    [CrossRef] [PubMed]

2006

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, "781 Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett. 31, 444 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

2005

2004

2002

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

2001

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

1998

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Barron, R. J.

Berggren, K. K.

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Caplan, D. O.

Carney, J. J.

Chen, J.

Chulkova, G.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Dauler, E. A.

Duligall, J.

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Fulconis, J.

Gol'tsman, G.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Gruber, S. S.

Habif, J. L.

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

Hadfield, R. H.

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846 (2005).
[CrossRef] [PubMed]

Hamilton, S. A.

Inoue, K.

Jaspan, M. A.

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

Kerman, A. J.

Kumar, P.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Lee, K. F.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

Li, X.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Liang, C.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

Lipatov, A.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Miller, A. J.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846 (2005).
[CrossRef] [PubMed]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Mirin, R. P.

Nam, S.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Nam, S. W.

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846 (2005).
[CrossRef] [PubMed]

Okunev, O.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Rarity, J.

Robinson, B. S.

Romani, R. W.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

Russell, P.

Schwall, R. E.

Semenov, A.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Sharping, J.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Smirnov, K.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Sobolewski, R.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Stevens, M. J.

Stevens, M. L.

Takesue, H.

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Wadsworth, W.

Williams, C.

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

Yang, J. K. W.

Appl. Phys. Lett.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998).
[CrossRef]

G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).

M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector," Appl. Phys. Lett. 89, 031112 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Phys. Rev. A

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

Phys. Rev. Lett.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1.
FIG. 1.

Schematic of the experimental setup: (a) Optical-fiber source of polarization-entangled photon pairs with use of a counter propagating scheme. (b) Polarization entanglement analyzer. HWP, half-wave plate; QWP, quarter-wave plate; DSF, dispersion-shifted fiber; WDM, wavelength division multiplexers, which are employed as pump-rejection filters; PBS, polarization beam splitter; PC, polarization controller; SR-430, multichannel scaler/averager.

FIG. 2.
FIG. 2.

Variation of the coincidence to accidentals ratio (CAR) versus average pump power (solid circles). The dashed curve is to guide the eye only. Inset (a) is a sample histogram (abscissa: time-bin number; ordinate: counts in 400,048 trials) from the SR430 for a pump power of 30 μW. Inset (b) shows the detected signal counts (solid diamonds) versus the pump power (abscissa: number of pump photons per pulse; ordinate: number of counts per pump pulse). A second-order-polynomial fit (solid curve) to the experimental data is also shown.

FIG. 3.
FIG. 3.

Results of two-photon-interference (TPI) measurements. The inset shows crudely measured TPI fringe visibility versus SSPD dark-count probability during 20 ns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CAR η s η i μ [ η s η i ( μ + μ b ) 2 + η s ( μ + μ b ) p d i + η i ( μ + μ b ) p d s ]

Metrics