Abstract

We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern definition on a sub 30-nm scale in combination with a deep vertical silicon etch of the order of ~300 nm. The nanoimprint method offers a cost-efficient parallel fabrication process with state-of-the-art replication fidelity, comparable to direct electron beam writing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A.  Vlasov, and S. J.  McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express  12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  2. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
    [CrossRef] [PubMed]
  3. E. Dulkeith, F. Xia, L. Schares, W. M. Green, L. Sekaric, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires: errata," Opt. Express 14, 6372-6372 (2006).
    [CrossRef] [PubMed]
  4. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
    [CrossRef] [PubMed]
  5. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  6. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12, 1583-1591 (2004).
    [CrossRef] [PubMed]
  7. Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
    [CrossRef] [PubMed]
  8. V. R.  Almeida, Q. F.  Xu, and M.  Lipson, "Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett.  30, 2403-2405 (2005)
    [CrossRef] [PubMed]
  9. H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  10. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
    [CrossRef] [PubMed]
  11. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
    [CrossRef] [PubMed]
  12. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  13. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
    [CrossRef]
  14. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
    [CrossRef]
  15. P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).
    [CrossRef] [PubMed]
  16. L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).
    [CrossRef] [PubMed]
  17. A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004).
    [CrossRef] [PubMed]
  18. TEBN-1 by Tokuyama Corp., Tokyo, Japan http://www.tokuyama.co.jp
  19. B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
    [CrossRef]
  20. B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
    [CrossRef]
  21. A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
    [CrossRef]
  22. H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
    [CrossRef]
  23. micro resist technology GmbH, Berlin, Germany, http://www.microresist.com
  24. T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
    [CrossRef]
  25. J. S. Jensen and O. Sigmund. "Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends," Appl. Phys. Lett.  84, 2022-2024 (2004)
    [CrossRef]
  26. M. P. Bendsøe and O. Sigmund, Topology optimization — Theory, Methods and Applications (Springer-Verlag, 2003)

2006 (7)

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
[CrossRef] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. Green, L. Sekaric, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires: errata," Opt. Express 14, 6372-6372 (2006).
[CrossRef] [PubMed]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

V. R.  Almeida, Q. F.  Xu, and M.  Lipson, "Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett.  30, 2403-2405 (2005)
[CrossRef] [PubMed]

2004 (8)

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

J. S. Jensen and O. Sigmund. "Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends," Appl. Phys. Lett.  84, 2022-2024 (2004)
[CrossRef]

A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12, 1583-1591 (2004).
[CrossRef] [PubMed]

Y. A.  Vlasov, and S. J.  McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express  12, 1622-1631 (2004).
[CrossRef] [PubMed]

P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).
[CrossRef] [PubMed]

L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

2000 (2)

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
[CrossRef]

Almeida, V. R.

Austin, M. D.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Ayón, A.A.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Baets, R.

Beckx, S.

Bienstman, P.

Bilenberg, B.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Bogaerts, W.

Bøggild, P.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Borel, P.I.

Braff, R.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Bundgaard, F.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Cerrina, F.

Chen, D.-Z.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Chong, H.

Chou, S. Y.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
[CrossRef]

Cohen, O.

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Debackere, P.

Dulkeith, E.

Dumon, P.

Emery, T.

Engemann, J.

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

Erickson, D.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Fink, M.

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Frandsen, L.H.

Ge, H.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Geschke, O.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Green, W. M.

Green, W. M. J.

Gruetzner, G.

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Hamann, H. F.

Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
[CrossRef] [PubMed]

Harpøth, A.

Jacobsen, S.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

Jensen, J. S.

J. S. Jensen and O. Sigmund. "Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends," Appl. Phys. Lett.  84, 2022-2024 (2004)
[CrossRef]

Jensen, J.S.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Khanna, R.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Kimerling, L. C.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
[CrossRef]

Kristensen, A.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Kristensen, M.

Kuo, Y. -H.

Lavrinenko, A.

Lee, K. K.

Li, M.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Lim, D. R.

Lipson, M.

Liu, A.

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Luyssaert, B.

Lyon, S. A.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

McNab, S.

McNab, S. J.

Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
[CrossRef] [PubMed]

Y. A.  Vlasov, and S. J.  McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express  12, 1622-1631 (2004).
[CrossRef] [PubMed]

Moll, N.

Nielsen, T.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Niemi, T.

Nilsson, D.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

O'Boyle, M.

Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
[CrossRef] [PubMed]

Osenberg, F.

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

Paniccia, M.

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Psaltis, D.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
[CrossRef]

Reuther, F.

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Rockwood, T.

Rong, H.

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Sawin, H. H.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Schares, L.

Scheer, H.-C.

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

Scheerlinck, S.

Scherer, A.

Schmidt, M. A.

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Schmidt, M. S.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Schøler, M.

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Schulz, H.

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

Schuster, C.

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Sekaric, L.

Shi, P.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).
[CrossRef] [PubMed]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Shin, J.

Sigmund, O.

Skjolding, L. H. D.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

Szabo, P.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

Taillaert, D.

Tegenfeldt, J. O.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

Thorhauge, M.

Van Campenhout, J.

Van Thourhout, D.

Vlasov, Y.

Vlasov, Y. A.

Wasserman, D.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Wiaux, V.

Wu, W.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Xia, F.

Xu, Q. F.

Yu, Z.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

J. S. Jensen and O. Sigmund. "Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends," Appl. Phys. Lett.  84, 2022-2024 (2004)
[CrossRef]

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. Vol.  67, 3114-3116 (1995).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol.  84, 5299-5301 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (2)

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, "Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast," J. Vac. Sci. Technol. B 22, 1770-1775 (2004)
[CrossRef]

B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G. Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac. Sci. Technol. B 24, 1776-1779 (2006)
[CrossRef]

Mat. Res. Soc. (1)

A. A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, "Novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc. 605, 141-147 (2000)
[CrossRef]

Microlectron. Eng. (1)

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-1612 (2006)
[CrossRef]

Nature (2)

Y. A.  Vlasov, M.  O'Boyle, H. F.  Hamann, and S. J.  McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature  438, 65-69 (2005)
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005)
[CrossRef] [PubMed]

Opt. Express (10)

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
[CrossRef] [PubMed]

A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12, 1583-1591 (2004).
[CrossRef] [PubMed]

Y. A.  Vlasov, and S. J.  McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express  12, 1622-1631 (2004).
[CrossRef] [PubMed]

P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).
[CrossRef] [PubMed]

L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).
[CrossRef] [PubMed]

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
[CrossRef] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. Green, L. Sekaric, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires: errata," Opt. Express 14, 6372-6372 (2006).
[CrossRef] [PubMed]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography using anti-sticking layers," Proc. SPIE 3996, 244-249 (2000)
[CrossRef]

Other (3)

micro resist technology GmbH, Berlin, Germany, http://www.microresist.com

M. P. Bendsøe and O. Sigmund, Topology optimization — Theory, Methods and Applications (Springer-Verlag, 2003)

TEBN-1 by Tokuyama Corp., Tokyo, Japan http://www.tokuyama.co.jp

Supplementary Material (1)

» Media 1: GIF (586 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Left) SEM image of a photonic wire adjacent to a 10 μm long W1 PhCW fabricated in SOI by NIL. The etch patterns seen on the outer sides are caused by the controlled flow of excess polymer during the imprint process. (Right): Measured transmission spectrum for quasi-TE polarized laser light through the structure. Inset shows a zoom-in on the spectrum.

Fig. 2.
Fig. 2.

Leftmost: (587 kB) Movie of how the material is redistributed in the design domain during the topology optimization procedure. The figure shows four frames from the movie of the topology optimization process. The leftmost frame shows the initial un-optimized structure and the rightmost frame the final topology-optimized design obtained after 760 iterations. The two middle frames show intermediate stages (iteration steps 10 and 200, respectively) before the optimization process has converged. [Media 1]

Fig. 3.
Fig. 3.

(Left) The original TO design. Light enters the component from the left side and is split into the two arms dependent on the wavelength. (Middle) SEM image of the fabricated splitter using NIL. (Right) Normalized measured transmission below the cut-off wavelength for quasi-TE polarized light from the two output arms. Also shown are 3D FDTD calculations for the transmission through the output arms of the originally designed structure. The 3D FDTD calculations have been blue-shifted by 0.5% in wavelength to match the experimental wavelength scale.

Metrics