Abstract

We report a novel electrostatic actuated nano-electromechanical optoelectronic (NEMO) tunable vertical-cavity surface-emitting laser (VCSEL) centered at 850 nm. By integrating a movable, single-layer (230 nm), high-index-contrast subwavelength grating (HCG) as the VCSEL top mirror, single mode emission (SMSR >40 dB) and continuous wavelength tuning (~2.5 nm) was obtained at room temperature under CW operation. The small footprint of HCG enables the scaling down of each of the cantilever dimensions by a factor of 10, leading to 1000 times reduction in mass, which potentially increases the mechanical resonant frequency and tuning speed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
    [CrossRef]
  2. J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
    [CrossRef]
  3. C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
    [CrossRef]
  4. M. Lackner, M. Schwarzott, F. Winter, B. Kogel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
    [CrossRef] [PubMed]
  5. J. Kitching, "Miniature atomic clock makes its debut," Opto & Laser Europe, 22-23 (2004).
  6. S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
    [CrossRef]
  7. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
    [CrossRef]
  8. M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
    [CrossRef]
  9. C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
    [CrossRef]
  10. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
    [CrossRef]
  11. C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
    [CrossRef]
  12. C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
    [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
    [CrossRef]
  14. H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
    [CrossRef] [PubMed]
  15. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
[CrossRef]

2006

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kogel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

2005

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
[CrossRef]

2004

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

2000

H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

1981

Amann, M. C.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Beatty, R.

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Boehm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Boucart, J.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
[CrossRef]

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

Cheng, K. B.

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

Craighead, H. G.

H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
[CrossRef] [PubMed]

Cunningham, B. T.

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Decai, S.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Dongxu, Z.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Fan, W.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Foley, J. E.

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Gaylord, T. K.

Halbritter, H.

M. Lackner, M. Schwarzott, F. Winter, B. Kogel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Harris, J. S.

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
[CrossRef]

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Jatta, S.

Kageyama, T.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Kner, P.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Kogel, B.

Lackner, M.

Li, P.

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Lu, C.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Mateus, C. F. R.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

Maute, M.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Meissner, P.

M. Lackner, M. Schwarzott, F. Winter, B. Kogel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Moharam, M. G.

Nabiev, R. F.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Pathak, R.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Pesala, B.

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

Pisano, A. P.

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Schwarzott, M.

Suzuki, Y.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Winter, F.

Ye, Z.

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

Yuen, W.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

Yunfei, D.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
[CrossRef]

Appl. Phys. Lett.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31102 (2006).
[CrossRef]

Electron. Lett.

C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B. T. Cunningham, "Ultra-sensitive immunoassay using VCSEL detection system," Electron. Lett. 40, 649-651 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R. F. Nabiev, and W. Yuen, "Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure," IEEE Photon. Technol. Lett. 16, 714-716 (2004).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

M. C. Y. Huang, K. B. Cheng, Z. Ye, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, "Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL," IEEE Photon. Technol. Lett. 18, 1197-1199 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 um) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

J. Opt. Soc. Am.

Nature Photon.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007).
[CrossRef]

Opt. Lett.

Science

H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
[CrossRef] [PubMed]

Sens. Actuators A

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, "Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10um," Sens. Actuators A 119, 57-62 (2005).
[CrossRef]

Other

J. Kitching, "Miniature atomic clock makes its debut," Opto & Laser Europe, 22-23 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Schematic cross-section of NEMO tunable VCSEL. The top mirror consists of a fixed 4 pairs of p-doped DBR, a variable airgap, and a freely-suspending n-doped high-index-contrast subwavelength grating (HCG) that is supported via a nano-cantilever beam.

Fig. 2.
Fig. 2.

Simulated reflectivity for the NEMO HCG-based top mirror (duty cycle of 65%). The reflectivity is >99.9% for normal-incident TM polarized light for wavelength ranges of 0.8–0.88 μm, meanwhile the reflectivity is merely 95% for TE polarized light. In comparison, the reflectivity for a HCG with a grating duty cycle of 0% and 100% is also shown.

Fig. 3.
Fig. 3.

Scanning electron microscope image of fabricated device. (a) Top view showing the entire device structure and the inset shows the zoo-in image of the HCG in the middle of the VCSEL mesa. (b) Side-view focusing on the freely-suspended HCG that is supported via a nanocantilever, and the inset shows the zoom-in image of individual grating fingers.

Fig. 4.
Fig. 4.

Measured continuous-wave (CW) static characteristics of the NEMO tunable VCSEL without applying external bias voltage. (a) Light-intensity versus bias (LI) and electrical voltage versus current (IV) characteristic of the fabricated device. (b) Emission spectrum of the device biased at 1.3 times the threshold current.

Fig. 5.
Fig. 5.

(a) CW tuning spectra for the NEMO tunable VCSEL under various external applied voltages across the HCG cantilever. (b) Measured emission wavelength as a function of applied external voltage and measured peak spectral intensity as a function of applied voltage.

Fig. 6.
Fig. 6.

(a) Measured mechanical deflection of the cantilever beam under various external applied voltages using a white light interferometer. (b) Simulated VCSEL emission wavelength as a function of airgap thickness.

Metrics