Abstract

Properties of the induced polarization signal with a solid immersion lens (SIL) are investigated by experiments and simulations. A LaSFN9 SIL (NA=1.5) is used in the experiment. Physics of the induced polarization signal are described for several configurations of optical systems and substrates. Induced polarization signals from evanescent-wave coupling to dielectric, semiconductor and metal substrates are studied in detail. It is shown that surface plasmon waves are excited with Au substrates and the induced polarization signal is affected by the surface plasmon waves. Simulation results of the induced polarization signal for a gallium phosphide SIL (NA=2.64) are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
    [CrossRef]
  3. C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
    [CrossRef]
  4. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
    [CrossRef]
  5. T. D. Milster, "Near-field optical data storage: avenues for improved performance," Opt. Eng. 40, 2255-2260 (2001).
    [CrossRef]
  6. K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef] [PubMed]
  7. M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
    [CrossRef]
  8. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
    [CrossRef]
  9. T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
    [CrossRef]
  10. T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
    [CrossRef]
  11. T. Chen, T. D. Milster, S. H. Yang, D. Hansen, "Evanescent imaging with induced polarization by using a solid immersion lens," Opt. Lett. 32,124-126 (2007).
    [CrossRef]
  12. T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
    [CrossRef]
  13. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  14. D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, "Optical field enhancement by long-range surface-plasma waves," Appl. Opt. 21, 3993-3995 (1982).
    [CrossRef] [PubMed]
  15. B. Ran and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006).
    [CrossRef] [PubMed]
  16. A. Otto, "The surface polariton response in attenuated total reflection," in Polaritons: Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein and F. Demartina, ed. (Pentagon, New York, 1974), pp. 117-121.
  17. D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
    [CrossRef]
  18. B. Richards and E. Wolf, "Electromagnetic diffraction in optical system.2. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  19. D. G. Flagello, T. Milster, and A. E. Rosenbluthk, "Theory of high-NA imaging in homogeneous thin films," J. Opt. Soc. Am. A 13, 53-64 (1996).
    [CrossRef]
  20. T. D. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion lens system," Appl. Opt. 38, 5046-5057 (1999).
    [CrossRef]
  21. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

2007

2006

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

B. Ran and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006).
[CrossRef] [PubMed]

2005

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

2004

D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
[CrossRef]

2003

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

2001

T. D. Milster, "Near-field optical data storage: avenues for improved performance," Opt. Eng. 40, 2255-2260 (2001).
[CrossRef]

2000

Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

1999

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

T. D. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion lens system," Appl. Opt. 38, 5046-5057 (1999).
[CrossRef]

1998

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

1996

1990

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1982

1968

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

1959

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system.2. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Borek, G.

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

Brown, D.

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

Challener, W.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Chen, T.

T. Chen, T. D. Milster, S. H. Yang, D. Hansen, "Evanescent imaging with induced polarization by using a solid immersion lens," Opt. Lett. 32,124-126 (2007).
[CrossRef]

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
[CrossRef]

Craig, A. E.

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Deck, R. T.

Elings, V. B.

Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Fasano, J. J.

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

Flagello, D. G.

Ghislain, L.

Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

Goodnick, S.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

Gunther, A.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

Hansen, D.

Hickernell, R. K.

Hirota, K.

T. D. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion lens system," Appl. Opt. 38, 5046-5057 (1999).
[CrossRef]

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

Ishimoto, T.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Jameson, R. S.

Jo, J. S.

T. D. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion lens system," Appl. Opt. 38, 5046-5057 (1999).
[CrossRef]

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Kondo, T.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Lang, M.

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

Lipson, S. G.

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

McCarthy, B.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

Menendez, J.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

Menéndez, J.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

Milster, T.

Milster, T. D.

T. Chen, T. D. Milster, S. H. Yang, D. Hansen, "Evanescent imaging with induced polarization by using a solid immersion lens," Opt. Lett. 32,124-126 (2007).
[CrossRef]

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
[CrossRef]

T. D. Milster, "Near-field optical data storage: avenues for improved performance," Opt. Eng. 40, 2255-2260 (2001).
[CrossRef]

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

T. D. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion lens system," Appl. Opt. 38, 5046-5057 (1999).
[CrossRef]

Minamitani, T.

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Nakaoki, A.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Nam, D.

D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
[CrossRef]

Otto, A.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Park, J. K.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

Peng, C.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Poweleit, C.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

Poweleit, C. D.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Ran, B.

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system.2. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Rosenbluthk, A. E.

Saito, K.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Sarid, D.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, "Optical field enhancement by long-range surface-plasma waves," Appl. Opt. 21, 3993-3995 (1982).
[CrossRef] [PubMed]

Sendur, K.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Shimura, K.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

Shinoda, M.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system.2. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Wu, Q.

Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

Yamamoto, M.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

Yang, S. H.

Zhang, Y.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, "Raman imaging of patterned silicon using a solid immersion lens," Appl. Phys. Lett. 73, 2275-2277 (1998).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett.  74, 501-503 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett.  75, 4064-4066 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, "The nature of the coupling field in optical data storage using solid immersion lenses," Jpn. J. Appl. Phys. 38, 1793-1794 (1999).
[CrossRef]

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724 (2003).
[CrossRef]

M. Lang, T. D. Milster, T. Minamitani, G. Borek, and D. Brown, "Fabrication and characterization of sub-100 km diameter gallium phosphide solid immersion lens arrays," Jpn. J. Appl. Phys. 44, 3385-3387 (2005).
[CrossRef]

London, Ser. A

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system.2. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Opt. Eng.

T. Chen, T. D. Milster, J. K. Park, B. McCarthy, D. Sarid, C. Poweleit, and J. Menendez, "Near-field solid immersion lens (SIL) microscope with advanced compact mechanical design," Opt. Eng. 45, 103002 (2006).
[CrossRef]

T. D. Milster, "Near-field optical data storage: avenues for improved performance," Opt. Eng. 40, 2255-2260 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Proc. IEEE

Q. Wu, L. Ghislain, and V. B. Elings, "Imaging with solid immersion lenses, spatial resolution, and applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Proc. SPIE

D. Nam, T. D. Milster and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754, 1049-1055 (2004).
[CrossRef]

Z. Phys.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Other

A. Otto, "The surface polariton response in attenuated total reflection," in Polaritons: Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein and F. Demartina, ed. (Pentagon, New York, 1974), pp. 117-121.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of a SIL induced-polarization near-field microscope. Linearly polarized collimated coherent illumination is used at the entrance pupil. With the flat surface of the SIL located very close to the sample, an orthogonal component of polarization is induced upon reflection from the flat surface of the SIL through frustrated total internal reflection.

Fig. 2.
Fig. 2.

Schematic of polarized illumination in a SIL optical system. (a) Top view of the entrance pupil, native polarization state at the entrance pupil is along the horizontal direction. (b) p polarization along the horizontal direction of entrance pupil, (c) s polarization along the vertical direction of entrance pupil, (d) Mixed p and s polarization along diagonal direction of entrance pupil.

Fig. 3.
Fig. 3.

S and p polarized light reflection verses incident angle at glass (n=1.84) and air interface, λ=650nm and h»λ; (a) Amplitude coefficients of rp and rs (b) Phase difference between rp and rs .

Fig. 4.
Fig. 4.

Reflected light polarization pupil maps. LaSFN9 SIL, NA=1.5, refractive index of substrate Ns =1.67. The inner dashed circle indicates Brewster’s angle and the outer dashed circle indicates TIR angle. Axes correspond to n × direction cosine in the pupil. (a) Air gap h=100nm, (b) air gap h=1000nm.

Fig. 5.
Fig. 5.

Near-field induced polarization signal at the lens pupil for different gap heights. The white dash circles on the pupil pictures indicate the boundary of total internal reflection (TIR) critical angle, which shows that most of the induced energy is due to evanescent waves beyond the critical angle. The grayscale is linearly proportional to optical power. The box indicates regions of Fabry-Perot fringes. As rings inside the TIR boundary.

Fig. 6.
Fig. 6.

The calculated induced and native polarization signal S for a Si substrate with a LaSFN9 SIL (NA=1.5) at 650nm, and sinθm =0.8.

Fig. 7.
Fig. 7.

Simulation and measurement data obtained using a λ=650nm laser beam for the illumination light with n=1.84 for LaSFN9. The solid and dashed black curves are the induced polarization signals versus air gap height h for glass and Si flat substrates respectively, with θm ,=53.13°. The green line is the simulation of GaP (n=3.3) SIL material with a glass substrate, where θm =26.49° . In the measurements, gap height was determined by use of a calibrated bimorph that holds the SIL. [12]

Fig. 8.
Fig. 8.

Simulation and measurement data obtained using λ=650nm laser light with NA=1.5 and a Au substrate. (a) Induced polarization signals versus air gap height h. (b) Induced polarization signals at the pupil for h=400nm.

Fig. 9.
Fig. 9.

(a). Otto configuration geometry for exciting a surface plasmon wave (b) Schematic diagram of three layers calculation of reflection coefficient. ϵ0, ϵ1 and ϵ2 are the dielectric constants of SIL, air and Au, respectively. θ is the incident angle and θC is the critical angle of the TIR.

Fig. 10.
Fig. 10.

Otto configuration for SPR with ϵ0=3.3856 (glass), ϵ,=1 (air) and ϵ2= -9.8936 + 1.0710i (Au). (a) Calculation of p polarized light reflection coefficient for different air gap heights. (b) Calculation of phase difference Δϕ between p polarized and s polarized light for different air gap heights.

Fig. 11
Fig. 11

Calculated induced polarization signals versus air gap height h for glass, Si and Au flat substrates (GaP SIL, λ=650nm, NA=2.64) and photoresist thin film (ZnS SIL, λ=365nm, NA=2.18). Insert shows an expanded scale near h=0nm.

Tables (2)

Tables Icon

Table 1. The characteristic values ht , hc , hc -ht , Smin , and g of glass, Si and Au substrates with LaSFN9 and GaP SILs.

Tables Icon

Table 2. Parametric values of induced polarization signal for a LaSFN9 SIL glass and Si substrate verse gap height h in Fig. 7.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

z 1 e = λ 4 π 1 n 2 sin 2 θ m 1 .
f ( h ) = C 1 { 1 exp ( C 2 h C 3 ) } C 4 + C 5 .
r q = r 01 q + r 12 q exp ( 2 ik 1 z h ) 1 + r 01 q r 12 q exp ( 2 ik 1 z h ) , q = p , s
r i , i + 1 q = X i q X i + 1 q X i q + X i + 1 q , i = 0,1
X j q = { ε j k jz q = p k jz q = s j = 0,1,2
k iz = ( ω c ) 2 ε i ( ω c sin θ ) 2 ε 0 .
E α 0 β 0 = Q α 0 β 0 A α 0 β 0
Q = [ m β 0 2 + m α 0 2 β 0 γ EXP ( 1 γ 0 2 ) ( 1 γ EXP 2 ) m α 0 β 0 + m α 0 β 0 γ 0 γ EXP ( 1 γ 0 2 ) ( 1 γ EXP 2 ) m α 0 γ EXP 1 γ 0 2 ( 1 γ EXP 2 ) m α 0 β 0 + m α 0 β 0 2 γ EXP ( 1 γ 0 2 ) ( 1 γ EXP 2 ) m α 0 2 + m β 0 2 γ 0 γ EXP ( 1 γ 0 2 ) ( 1 γ EXP 2 ) m β 0 γ EXP 1 γ 0 2 ( 1 γ EXP 2 ) α 0 β 0 1 γ EXP 2 1 γ 0 2 β 0 γ 0 1 γ EXP 2 1 γ 0 2 ( 1 γ 0 2 ) ( 1 γ EXP 2 ) ] ,
A ( α 0 , β 0 ) = M F ( α 0 , β 0 ) M p ( α 0 , β 0 ) O ( 0 , 0 ) Ψ ( α 0 , β 0 ) ,
M F ( α 0 , β 0 ) = [ F S F P 0 0 0 0 0 F S F P 0 0 0 0 0 F zP ] ,
F l = τ r II τ II l exp ( ) ,
F zP = n γ 0 γ 1 τ r II τ II P exp ( ) ,
γ 1 = [ 1 n 2 ( 1 γ 0 2 ) ] 1 2 ,
ϕ = 2 πh γ 1 .
M P ( α 0 , β 0 ) = [ β 0 2 1 γ 0 2 α 0 β 0 1 γ 0 2 γ 0 α 0 2 1 γ 0 2 α 0 β 0 γ 0 1 γ 0 2 α 0 β 0 1 γ 0 2 α 0 2 1 γ 0 2 α 0 β 0 γ 0 1 γ 0 2 γ 0 β 0 2 1 γ 0 2 α 0 β 0 ] ,
Ψ ( α 0 , β 0 ) = T ( α 0 , β 0 ) × exp [ i 2 πW ( α 0 , β 0 ) ] γ ENP γ 0 ,
O ( α ENP , β ENP ) = [ O x ( α ENP , β ENP ) O y ( α ENP , β ENP ) ] .

Metrics