Abstract

An extensively modified laser-lithography system specially developed for realization of micro-optical profiles on non-planar surfaces is presented. This extended system offers new possibilities of fabricating micro-optical elements without the technology related restriction of surface shape that existed so far. A diffractive lens on a convex spherical substrate is designed and fabricated as an example for hybrid achromatic refractive-diffractive elements to demonstrate the functionality of the system and the wide range of possible new applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
    [CrossRef]
  2. Y. Xie, Z. Lu, F. Li, J. Zhao and Z. Weng, "Lithographic fabrication of large diffractive optical elements on a concave lens surface," Opt. Express 10, 1043-1047 (2002).
    [PubMed]
  3. Y. Xie, Z. Lu, and F. Li, "Lithographic fabrication of large curved hologram by laser writer," Opt. Express 12, 1810-1814 (2004).
    [CrossRef] [PubMed]
  4. U. D. Zeitner, and P. Dannberg, "Double-sided hybrid micro-optical elements combining functions of multistage optical systems," Proc. SPIE 4440, 44-50 (2001).
    [CrossRef]
  5. T. Stone and N. George, "Hybrid diffractive-refractive lenses and achromats," Appl. Opt. 27, 2960-2971 (1988).
    [CrossRef] [PubMed]
  6. C. G. Blough, M. Rossi, S. K. Mack, and R. L. Michaels, "Single-point diamond turning and replication of visible and near-infrared diffractive optical elements," Appl. Opt. 36, 4648-4654 (1997).
    [CrossRef] [PubMed]
  7. X. Feng and L. Sun, "Mathematical model of spin-coated photoresist on a spherical substrate," Opt. Express 13, 7070-7075 (2005).
    [CrossRef] [PubMed]
  8. C. Londoño and P. Clark, "Modeling diffraction efficiency effects when designing hybrid diffractive lens systems," Appl. Opt. 31, 2248-2252 (1992).
    [CrossRef] [PubMed]

2005

2004

2002

2001

U. D. Zeitner, and P. Dannberg, "Double-sided hybrid micro-optical elements combining functions of multistage optical systems," Proc. SPIE 4440, 44-50 (2001).
[CrossRef]

1997

1994

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

1992

1988

Blough, C. G.

Clark, P.

Dannberg, P.

U. D. Zeitner, and P. Dannberg, "Double-sided hybrid micro-optical elements combining functions of multistage optical systems," Proc. SPIE 4440, 44-50 (2001).
[CrossRef]

Feng, X.

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

George, N.

Li, F.

Londoño, C.

Lu, Z.

Mack, S. K.

Michaels, R. L.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Rossi, M.

C. G. Blough, M. Rossi, S. K. Mack, and R. L. Michaels, "Single-point diamond turning and replication of visible and near-infrared diffractive optical elements," Appl. Opt. 36, 4648-4654 (1997).
[CrossRef] [PubMed]

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Schütz, H.

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, "Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist," Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Stone, T.

Sun, L.

Weng, Z.

Xie, Y.

Zeitner, U. D.

U. D. Zeitner, and P. Dannberg, "Double-sided hybrid micro-optical elements combining functions of multistage optical systems," Proc. SPIE 4440, 44-50 (2001).
[CrossRef]

Zhao, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the main functional components of the modified laser lithography system allowing for structuring curved surfaces.

Fig. 2.
Fig. 2.

Data preparation: data are defined in the tangential plane and projected onto the surface (a). The structure is divided into a number of subfields, where each subfield is pre-distorted and exposed separately (b).

Fig. 3.
Fig. 3.

Design of a simple optical 1:1 imaging setup.

Fig. 4.
Fig. 4.

Comparison of MTF for standard lens (blue, dotted line) and hybrid lens (red, plain line) to diffraction limited performance of an ideal lens (black, dashed line) for a field of view of 2 mm × 2 mm in the image plane. The table on the right shows parameters of the simulation.

Fig. 5.
Fig. 5.

(a) Photograph of the diffractive element on a biconvex lens. (b) Microscope picture of the hybrid element taken in differential interference contrast mode.

Fig. 6.
Fig. 6.

Comparison of theoretically and experimentally obtained polychromatic MTF for the standard and the hybrid lens.

Fig. 7.
Fig. 7.

Maximum diffraction efficiency for blazed gratings with varying grating period which were fabricated by our laser lithography system on planar substrates.

Tables (1)

Tables Icon

Table 1. Technical data of the new laser-lithography system

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( m , λ ) = sin c 2 { π [ m m 0 λ 0 Δ n ( λ 0 ) Δ n ( λ ) λ ] } ,

Metrics