Abstract

We report on the conception, design, fabrication, experimental characterization, and theoretical analysis of nanocrystal scintillators hybridized on Si detectors and CCDs for enhanced detection and imaging in UV. Integrating luminescent CdSe/ZnS core-shell nanocrystals (NCs of 3.2 and 5.2 nm in diameter with 5% size distribution) to efficiently convert incident UV radiation to visible emission, we demonstrate hybrid NC-Si photodetectors that exhibit significantly improved responsivity between 200-240nm, experimentally with a two orders of magnitude peak enhancement and theoretically with a three orders of magnitude peak enhancement. Such nanocrystal based scintillators hold great promise in UV detection and imaging on Si platforms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley and Sons,2004).
    [CrossRef]
  3. R. Soref, “Silicon photonics technology: past, present, and future,” Proc. SPIE 5730,19–28 (2005).
    [CrossRef]
  4. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26,58–66 (2006).
    [CrossRef]
  5. C. Gunn, “Photonics integration for optical interconnects,” in Proceedings of IEEE LEOS 2005 Annual Meeting (IEEE, 2005) pp. 732.
  6. T. T. Saito, “Technological opportunities in homeland security,” http://www.coloradophotonics.org
  7. T. Price, “Homeland security forces seek help from optical science,” Opt. Photonics News16–17 (2006).
  8. S. Gaponenko, Optical properties of semiconductor nanocrystals (Cambridge University Press, 1998).
    [CrossRef]
  9. M. A Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals,” J. Phys. Chem 100,468–471 (1996).
    [CrossRef]
  10. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
    [CrossRef]
  11. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
    [CrossRef] [PubMed]
  12. S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
    [CrossRef]
  13. S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
    [CrossRef]
  14. J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
    [CrossRef] [PubMed]
  15. D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
    [CrossRef]
  16. M. B. Fischbein and M. Drndic, “CdSe nanocrystal quantum-dot memory,” Appl. Phys. Lett 86,193106 (2005).
    [CrossRef]
  17. H. V. Demir, I. M. Soganci, and E. Mutlugun, “CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV,” in Proceedings of IEEE LEOS 2006 Annual Meeting (IEEE 2006), pp. WN3.

2007 (1)

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

2006 (2)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26,58–66 (2006).
[CrossRef]

T. Price, “Homeland security forces seek help from optical science,” Opt. Photonics News16–17 (2006).

2005 (3)

R. Soref, “Silicon photonics technology: past, present, and future,” Proc. SPIE 5730,19–28 (2005).
[CrossRef]

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

M. B. Fischbein and M. Drndic, “CdSe nanocrystal quantum-dot memory,” Appl. Phys. Lett 86,193106 (2005).
[CrossRef]

2004 (2)

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
[CrossRef]

2002 (1)

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

1997 (1)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

1996 (1)

M. A Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals,” J. Phys. Chem 100,468–471 (1996).
[CrossRef]

Alivisatos, A. P.

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

Bawendi, M.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Bulovic, V.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

Chan, W. C. W.

S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
[CrossRef]

Chaudhary, S.

S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
[CrossRef]

Coe, S.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Demir, H. V.

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

H. V. Demir, I. M. Soganci, and E. Mutlugun, “CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV,” in Proceedings of IEEE LEOS 2006 Annual Meeting (IEEE 2006), pp. WN3.

Drndic, M.

M. B. Fischbein and M. Drndic, “CdSe nanocrystal quantum-dot memory,” Appl. Phys. Lett 86,193106 (2005).
[CrossRef]

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

Fischbein, M. B.

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

M. B. Fischbein and M. Drndic, “CdSe nanocrystal quantum-dot memory,” Appl. Phys. Lett 86,193106 (2005).
[CrossRef]

Fréchet, J. M. J.

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

Gaponenko, S.

S. Gaponenko, Optical properties of semiconductor nanocrystals (Cambridge University Press, 1998).
[CrossRef]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26,58–66 (2006).
[CrossRef]

C. Gunn, “Photonics integration for optical interconnects,” in Proceedings of IEEE LEOS 2005 Annual Meeting (IEEE, 2005) pp. 732.

Guyot-Sionnest, P.

M. A Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals,” J. Phys. Chem 100,468–471 (1996).
[CrossRef]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Hines, M. A

M. A Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals,” J. Phys. Chem 100,468–471 (1996).
[CrossRef]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley and Sons,2004).
[CrossRef]

Liu, J.

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Mutlugun, E.

H. V. Demir, I. M. Soganci, and E. Mutlugun, “CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV,” in Proceedings of IEEE LEOS 2006 Annual Meeting (IEEE 2006), pp. WN3.

Nizamoglu, S.

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Ozel, T.

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

Ozkan, M.

S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
[CrossRef]

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Price, T.

T. Price, “Homeland security forces seek help from optical science,” Opt. Photonics News16–17 (2006).

Qi, D.

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley and Sons,2004).
[CrossRef]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Saito, T. T.

T. T. Saito, “Technological opportunities in homeland security,” http://www.coloradophotonics.org

Sari, E.

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

Selmic, S.

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

Sivula, K.

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

Soganci, I. M.

H. V. Demir, I. M. Soganci, and E. Mutlugun, “CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV,” in Proceedings of IEEE LEOS 2006 Annual Meeting (IEEE 2006), pp. WN3.

Soref, R.

R. Soref, “Silicon photonics technology: past, present, and future,” Proc. SPIE 5730,19–28 (2005).
[CrossRef]

Tanaka, T.

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

Woo, W.-K.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett (3)

S. Chaudhary, M. Ozkan, and W. C. W. Chan, “Trilayer hybrid polymer-quantum dot light-emitting diodes,” Appl. Phys. Lett 84,2925–2927 (2004).
[CrossRef]

D. Qi, M. B. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett 86,093103 (2005).
[CrossRef]

M. B. Fischbein and M. Drndic, “CdSe nanocrystal quantum-dot memory,” Appl. Phys. Lett 86,193106 (2005).
[CrossRef]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26,58–66 (2006).
[CrossRef]

J. Am. Chem. Soc (1)

J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells,” J. Am. Chem. Soc 126,6550–6551 (2004).
[CrossRef] [PubMed]

J. Phys. Chem (1)

M. A Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals,” J. Phys. Chem 100,468–471 (1996).
[CrossRef]

J. Phys. Chem. B (1)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101,9463–9475 (1997).
[CrossRef]

Nanotechnology (1)

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18,065709 (2007).
[CrossRef]

Nature (1)

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420,800–803 (2002).
[CrossRef] [PubMed]

Opt. Photonics News (1)

T. Price, “Homeland security forces seek help from optical science,” Opt. Photonics News16–17 (2006).

Proc. SPIE (1)

R. Soref, “Silicon photonics technology: past, present, and future,” Proc. SPIE 5730,19–28 (2005).
[CrossRef]

Other (6)

H. V. Demir, I. M. Soganci, and E. Mutlugun, “CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV,” in Proceedings of IEEE LEOS 2006 Annual Meeting (IEEE 2006), pp. WN3.

S. Gaponenko, Optical properties of semiconductor nanocrystals (Cambridge University Press, 1998).
[CrossRef]

C. Gunn, “Photonics integration for optical interconnects,” in Proceedings of IEEE LEOS 2005 Annual Meeting (IEEE, 2005) pp. 732.

T. T. Saito, “Technological opportunities in homeland security,” http://www.coloradophotonics.org

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley and Sons,2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental demonstration of improvement in the spectral response of a Si detector when hybridized with a nanocrystal scintillator (using red CdSe/ZnS nanocrystals).

Fig. 2.
Fig. 2.

Photoluminescence spectra of our red and yellow nanocrystals (NC). Insets show the absorption spectrum along with the photoluminescence spectrum of the respective nanocrystal.

Fig. 3.
Fig. 3.

The spectral ratio of the emitted optical power to the incident power measured on red type nanocrystals at room temperature.

Fig. 4.
Fig. 4.

The spectral responsivity of a Si photodetector with and without hybridizing red nanocrystal scintillator measured at room temperature. (The responsivity of bare Si detector is shown in navy curve and that of the same Si detector integrated with red nanocrystal scintillator is shown in red curve; the inset shows improvement of the spectral responsivity.)

Fig. 5.
Fig. 5.

Transmission spectra of red nanocrystals and host polymer measured at room temperature.

Fig. 6.
Fig. 6.

Semi-empirical simulation results for the improvement in the spectral responsivity of the Si photodetector integrating with red nanocrystal scintillators.

Fig. 7.
Fig. 7.

The spectral responsivity of a Si photodetector with and without hybridizing yellow nanocrystal scintillator measured at room temperature. (The responsivity of bare Si detector is shown in navy curve and that of the same Si detector integrated with yellow nanocrystal scintillator is shown in yellow curve; the inset shows improvement of the spectral responsivity).

Fig. 8.
Fig. 8.

Snapshots taken from CCD cameras under UV illumination at room temperature: the response of a CCD (a) without and (b) with hybridizing nanocrystal scintillator under broad UV illumination; and the response of another CCD (c) without and (d) with the scintillator when a UV optical beam is incident.

Metrics