Abstract

We perform a series of simulations and experiments at microwave frequencies where we dynamically alter the magnetic resonance of one individual split ring resonator by photodoping a piece of low-doped semiconductor positioned within the gap of the resonator. We predict and experimentally achieve a complete suppression of the resonance amplitude using an 815 nm laser source and then briefly consider the problem of tuning the frequency of an SRR by the same method. We also illustrate the metamaterial approach to active electromagnetic devices by implementing a simple yet efficient optical modulator and a three channel dynamical filter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Walser, "Electromagnetic metamaterials," Proc. SPIE 4467, 1-15 (2001).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  3. D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  4. R. W. Ziolkowski and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propag. 51, 2546-2549 (2003).
    [CrossRef]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  9. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  10. A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  11. J. B. Pendry, "Introduction," Opt. Express 11,639-639 (2003).
    [CrossRef] [PubMed]
  12. A. Lakhtakia and M. McCall, "Focus on negative refraction," New J. Phys. 7, 10.1088/1367-2630/7/ (2005).
    [CrossRef]
  13. V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).
  14. A. L. Pokrovsky and A. L. Efros, "Diffraction theory and focusing of light by a slab of left-handed material," Physica B 338, 333 - 337 (2003).
    [CrossRef]
  15. W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
    [CrossRef] [PubMed]
  16. D. R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  17. D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005).
    [CrossRef]
  18. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
    [CrossRef]
  19. A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.
  20. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
    [CrossRef]
  21. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
    [CrossRef]
  22. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
    [CrossRef]
  23. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
    [CrossRef] [PubMed]
  24. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  25. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
    [CrossRef] [PubMed]
  26. S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
    [CrossRef]
  27. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344 - 9349 (2006).
    [CrossRef] [PubMed]
  28. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  29. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  30. J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
    [CrossRef]
  31. P. Bhattacharya, "Semiconductor Optoelectronic Devices," (Prentice Hall, Upper Saddle River, 1997).
  32. C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
    [CrossRef]
  33. B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
    [CrossRef] [PubMed]

2006

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344 - 9349 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
[CrossRef] [PubMed]

2005

A. Lakhtakia and M. McCall, "Focus on negative refraction," New J. Phys. 7, 10.1088/1367-2630/7/ (2005).
[CrossRef]

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

2004

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
[CrossRef]

2003

R. W. Ziolkowski and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propag. 51, 2546-2549 (2003).
[CrossRef]

D. R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Introduction," Opt. Express 11,639-639 (2003).
[CrossRef] [PubMed]

2001

R. M. Walser, "Electromagnetic metamaterials," Proc. SPIE 4467, 1-15 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1980

C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
[CrossRef]

1968

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Baena, J. D.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

Basov, D. N.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Braginsky, L.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

Brock, J. B.

A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Caloz, C.

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chuang, I. L.

A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

De Fonzo, A. P.

C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
[CrossRef]

Degiron, A.

Driscoll, T.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Efros, A. L.

A. L. Pokrovsky and A. L. Efros, "Diffraction theory and focusing of light by a slab of left-handed material," Physica B 338, 333 - 337 (2003).
[CrossRef]

Engheta, N.

R. W. Ziolkowski and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propag. 51, 2546-2549 (2003).
[CrossRef]

García-García, J.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

Gollub, J.

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Greegor, R. B.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Guo, L.

Hafner, C.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Houck, A. A.

A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Itoh, T

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
[CrossRef]

Jelinek, L.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

Justice, B. J.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.

Kivshar, Y. S.

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia and M. McCall, "Focus on negative refraction," New J. Phys. 7, 10.1088/1367-2630/7/ (2005).
[CrossRef]

Lee, C. H.

C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Lim, S.

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
[CrossRef]

Lu, W. T.

Mak, P. S.

C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
[CrossRef]

Marqués, R.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

Martín, F.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

McCall, M.

A. Lakhtakia and M. McCall, "Focus on negative refraction," New J. Phys. 7, 10.1088/1367-2630/7/ (2005).
[CrossRef]

Mock, J. J.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.

Morrison, S. K.

Nemat-Nasser, S.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nielsen, J. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Padilla, W.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Parazzoli, C. G.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Introduction," Opt. Express 11,639-639 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Pokrovsky, A. L.

A. L. Pokrovsky and A. L. Efros, "Diffraction theory and focusing of light by a slab of left-handed material," Physica B 338, 333 - 337 (2003).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Rye, P. M.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

D. R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Shadrivov, I. V.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shkover, V.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.

Sridhar, S.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Tanielian, M. H.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Thompson, M. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Veselago, V. G.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Walser, R. M.

R. M. Walser, "Electromagnetic metamaterials," Proc. SPIE 4467, 1-15 (2001).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propag. 51, 2546-2549 (2003).
[CrossRef]

Appl. Phys. A

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative Index and Indefinite MediaWaveguide Couplers," Appl. Phys. A, in press.

Appl. Phys. Lett.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

IEEE J. Quantum. Electron.

C. H. Lee, P. S. Mak, and A. P. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE J. Quantum. Electron. 16, 277-288 (1980).
[CrossRef]

IEEE Trans. Antennas Propag.

R. W. Ziolkowski and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propag. 51, 2546-2549 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Appl. Phys.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys. 98, 033103 (2005).
[CrossRef]

J. Comput. Theor. Nanosci.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci. 3, 189-218 (2006).

Nature

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

New J. Phys.

A. Lakhtakia and M. McCall, "Focus on negative refraction," New J. Phys. 7, 10.1088/1367-2630/7/ (2005).
[CrossRef]

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005).
[CrossRef]

Opt. Express

Phys. Rev. E.

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E. 71, 036609 (2005).
[CrossRef]

Phys. Rev. Lett.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Proc. SPIE

R. M. Walser, "Electromagnetic metamaterials," Proc. SPIE 4467, 1-15 (2001).
[CrossRef]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science,  314, 977-980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

P. Bhattacharya, "Semiconductor Optoelectronic Devices," (Prentice Hall, Upper Saddle River, 1997).

A. L. Pokrovsky and A. L. Efros, "Diffraction theory and focusing of light by a slab of left-handed material," Physica B 338, 333 - 337 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

General setup. A single SRR containing a small piece of silicon in its gap is loaded in a waveguide defined by two horizontal metal plates and two vertical absorbing plates. The waveguide is 5 cm large and 1.55 cm high. Only the fundamental mode is excited in the frequency range under investigation (7–10 GHz).

Fig. 2.
Fig. 2.

S21 parameter as a function of frequency for the controllable SRR shown in the inset. The calculations have been performed for increasing levels of photodoping as indicated in the legend box. The SRR is 3 mm long, 4 mm high, 17 μm thick; its linewidth is 0.5 mm while its gap is 0.15 mm wide. The silicon slice has the same width as the SRR gap so that there is an electrical contact between the two materials.

Fig. 3.
Fig. 3.

S21 parameter as a function of frequency for the controllable SRR shown in the inset. The calculations have been performed for increasing levels of photodoping as indicated in the legend box. The structure is almost identical as in Fig. 2 except that the SRR gap has been widened from 0.15 to 0.18 mm. Thus, in this case, there is no electrical contact between the silicon slice and the SRR gap.

Fig. 4.
Fig. 4.

Evolution of the real part of the silicon permittivity and dielectric loss tangent as a function of the conductivity.

Fig. 5.
Fig. 5.

S21 parameter as a function of frequency for three photodoping schemes. The schematics show the cross-sections perpendicular to the SRR plane (the aspect ratio is different from the actual models). In each case, the gold regions represent the SRR arms; the red box is the silicon slice inside which the photodoped region is highlighted by a hatched pattern. The calculations have been performed using the same level of photodoping in all three configurations (σ = 15 S.m-1).

Fig. 6.
Fig. 6.

(a) From left to right: rear view showing the fiber glued in the hole of the substrate; SRR gap with the hole and fiber in place; SRR gap with the fiber coupled to a 632 nm laser diode; SRR gap with the silicon slice covering the hole; SRR gap with silver epoxy at the junction of the silicon and the SRR. (b) Experimental S21 parameters when the SRR is controlled with an 815 nm laser diode. The SRR dimensions are listed in Fig. 2.

Fig. 7.
Fig. 7.

Experimental S21 parameter for a SRR controlled with an 815 nm laser diode. This is the same structure as in Fig. 6, except that the silicon in the gap has no electrical contact with the SRR (cf. 4th picture of Fig. 6(a)).

Fig. 8.
Fig. 8.

Modulating the transmission amplitude between two dielectric waveguides. (a) General overview. Here the SRR dimensions are 4 mm × 4 mm, with a linewidth and gap size of 0.5 mm. The whole setup is in fact inserted between two horizontal Al plates (not shown here). (b) Experimental map of the electric field intensity recorded at 8.8 GHz when the silicon is illuminated by the laser (color scale in dB). (c) Experimental map of the electric field intensity recorded at 8.8 GHz when the silicon in the SRR gap is not illuminated by the laser (color scale in dB).

Fig. 9.
Fig. 9.

A dynamic three channel filter. (a) Experiment setup comprising two dielectric waveguides separated by the dynamic filter. The optical fibers that bring the laser light within each SRR gap are clearly visible in the upper part of the picture. Insets: general overview and closer view of the filter. (b) S21 parameters as a function of the frequency when the dynamic filter is left in the dark (black curve) and when the amplitude of each SRR is successively modulated with the laser diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε Si e h = 11.8 ω pe 2 ω 2 + v e 2 ( 1 i v e ω ) ω ph 2 ω 2 + v h 2 ( 1 i v h ω ) .
σ ( ii ) = 0.5 σ ( i )

Metrics