Abstract

Planar electric split ring resonator (eSRR) metamaterials and their corresponding inverse structures are designed and characterized computationally and experimentally utilizing finite element modeling and THz time domain spectroscopy. A complementary response is observed in transmission. Specifically, for the eSRRs a decrease in transmission is observed at resonance whereas the inverse structures display an increase in transmission. The frequency dependent effective complex dielectric functions are extracted from the experimental data and, in combination with simulations to determine the surface current density and local electric field,provide considerable insight into the electromagnetic response of our planar metamaterials. These structures may find applications in the construction of various THz filters, transparent THz windows, or THz grid structures ideal for constructing THz switching/modulation devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology],” Nat. Mater. 1,26–33 (2002).
    [CrossRef]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20,1716–1718 (1995).
    [CrossRef] [PubMed]
  3. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
    [CrossRef]
  4. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21,2011–2013 (1996).
    [CrossRef] [PubMed]
  5. T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
    [CrossRef]
  6. D. Zimdars, “Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070,108–116 (2003).
    [CrossRef]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
    [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
    [CrossRef] [PubMed]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
    [CrossRef] [PubMed]
  10. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. USP. 10,509–514 (1968).
    [CrossRef]
  11. Ulf Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
    [CrossRef] [PubMed]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
    [CrossRef] [PubMed]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
    [CrossRef] [PubMed]
  14. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
    [CrossRef] [PubMed]
  15. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
    [CrossRef] [PubMed]
  16. J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20,287–290 (1980).
    [CrossRef]
  17. D. A. Weitz, W. J. Skocpol, and M. Tinkham, “Capacitive-mesh output couplers for optically pumped farinfrared lasers,” Opt. Lett. 3,13–15 (1978).
    [CrossRef] [PubMed]
  18. F. Baumann, W. A. Bailey Jr., A. Naweed, W. D. Goodhue, and A. J. Gatesman, “Wet-etch optimization of free-standing terahertz frequency-selective structures,” Opt. Lett. 28,938–940 (2003).
    [CrossRef] [PubMed]
  19. R. D. Rawcliffe and C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6,1353–1357 (1967).
    [CrossRef] [PubMed]
  20. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7,37–55 (1967).
    [CrossRef]
  21. R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7,1987–1996 (1968).
    [CrossRef] [PubMed]
  22. V. P. Tomaselli, D. C. Edewaard, P. Gillan, and K. D. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20,1361–1366 (1981).
    [CrossRef] [PubMed]
  23. S. T. Chase and R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22,1775–1779(1983).
    [CrossRef] [PubMed]
  24. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14,931–933 (1989).
    [CrossRef] [PubMed]
  25. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metalmesh bandpass filters for the far infrared,” Appl. Opt. 33,6046–6052 (1994).
    [CrossRef] [PubMed]
  26. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
    [CrossRef]
  27. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
    [CrossRef] [PubMed]
  28. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
    [CrossRef]
  29. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
    [CrossRef]
  30. D. Grischkowsky, S. Keiding, M.van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7,2006–2015 (1990).
    [CrossRef]
  31. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
    [CrossRef]
  32. P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
    [CrossRef]
  33. J. A. Kong, “Electromagnetic wave theory,” 2nd Edition, (John Wiley & Sons, New York, 1990).
  34. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
    [CrossRef] [PubMed]
  35. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
    [CrossRef]

2007 (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

2006 (9)

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Ulf Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
[CrossRef]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

2004 (2)

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Zimdars, “Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070,108–116 (2003).
[CrossRef]

F. Baumann, W. A. Bailey Jr., A. Naweed, W. D. Goodhue, and A. J. Gatesman, “Wet-etch optimization of free-standing terahertz frequency-selective structures,” Opt. Lett. 28,938–940 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
[CrossRef]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology],” Nat. Mater. 1,26–33 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

1997 (1)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
[CrossRef]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21,2011–2013 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1990 (1)

1989 (1)

1983 (1)

1981 (1)

1980 (1)

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20,287–290 (1980).
[CrossRef]

1978 (1)

1968 (2)

R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7,1987–1996 (1968).
[CrossRef] [PubMed]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. USP. 10,509–514 (1968).
[CrossRef]

1967 (2)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7,37–55 (1967).
[CrossRef]

R. D. Rawcliffe and C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6,1353–1357 (1967).
[CrossRef] [PubMed]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Bailey Jr., W. A.

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

Baumann, F.

Bossard, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Chase, S. T.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Crowe, T. W.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metalmesh bandpass filters for the far infrared,” Appl. Opt. 33,6046–6052 (1994).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
[CrossRef]

Davis, J. E.

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20,287–290 (1980).
[CrossRef]

Dawes, D. H.

Densing, R.

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Edewaard, D. C.

Exter, M.van

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

Fattinger, Ch.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology],” Nat. Mater. 1,26–33 (2002).
[CrossRef]

Fischer, B. M.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Gatesman, A. J.

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
[CrossRef]

Gillan, P.

Globus, T.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

Goodhue, W. D.

Gossard, A. C.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

Haglund, Jr., R. F.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Helm, H.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Hesler, J. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metalmesh bandpass filters for the far infrared,” Appl. Opt. 33,6046–6052 (1994).
[CrossRef] [PubMed]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

Hu, B. B.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Jacobsen, R. H.

Joseph, R. D.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

Keiding, S.

Kong, J. A.

J. A. Kong, “Electromagnetic wave theory,” 2nd Edition, (John Wiley & Sons, New York, 1990).

Krug, P. A.

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

Leonhardt, Ulf

Ulf Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

Li, L.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Lopez, R.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Macfarlane, J. C.

Marqués, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
[CrossRef]

Mayer, T. S.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

McPhedran, R. C.

Medina, F.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21,2011–2013 (1996).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

Möller, K. D.

Mueller, E. R.

Naweed, A.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Nuss, M. C.

O’Hara, J. F.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Padilla, W. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

Porterfield, D. W.

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
[CrossRef]

Randall, C. M.

Rawcliffe, R. D.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

Skocpol, W. J.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

Suh, J. Y.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Tang, Y. U.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

Thoman, A.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Tinkham, M.

Tomaselli, V. P.

Uhd Jepsen, P.

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

Ulrich, R.

R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7,1987–1996 (1968).
[CrossRef] [PubMed]

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7,37–55 (1967).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. USP. 10,509–514 (1968).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Weikle II, R. M.

Weitz, D. A.

Werner, D. H.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Whitbourn, L. B.

Woolard, D. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

Wright, W.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology],” Nat. Mater. 1,26–33 (2002).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

D. Zimdars, “Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070,108–116 (2003).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88,251119 (2006).
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71,16–18 (1997).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88,041109 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54,1265–1276 (2006).
[CrossRef]

Infrared Phys. (2)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7,37–55 (1967).
[CrossRef]

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20,287–290 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology],” Nat. Mater. 1,26–33 (2002).
[CrossRef]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phil. Trans. R. Soc. London A (1)

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Phil. Trans. R. Soc. London A 362,365–377 (2004).
[CrossRef]

Phys. Rev. B (3)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B (in press) (2007).
[CrossRef]

P. Uhd Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., “Metalinsulator phase transition in VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74,205103 (2006).
[CrossRef]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65,144440 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic response at terahertz frequencies,” Phys. Rev. Lett. 96,107401 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76,4773–4776 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84,4184–4187 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Zimdars, “Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070,108–116 (2003).
[CrossRef]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

Ulf Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303,1494–1496 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications ? explosives, weapons and drugs,” Semicond. Sci. Technol. 20,S266–S280 (2005).
[CrossRef]

Sov. Phys. USP. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. USP. 10,509–514 (1968).
[CrossRef]

Other (1)

J. A. Kong, “Electromagnetic wave theory,” 2nd Edition, (John Wiley & Sons, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Geometry of original planar metamaterial unit cells (OE1-OE6) and their complements (CE1-CE6) with dimensions described in the text. The polarization of normally incident THz radiation is configured as shown in OE1 and CE1 for the original and complementary metamaterials, respectively.

Fig. 2.
Fig. 2.

Schematic of the experimental configuration for measurements of THz transmission in time domain. The black curves indicate the measured time domain waveforms of the incident and transmitted THz pulses through a complementary metamaterial sample (CE2).

Fig. 3.
Fig. 3.

Frequency dependent THz electric field transmission coefficients of the original (red curves) and the complementary (blue curves) metamaterials. The field configuration of the THz radiation is shown in OE1 (CE1) of Fig. 1 for the original (complementary) metamaterials.

Fig. 4.
Fig. 4.

Numerical simulation results of original planar metamaterials. All simulations are for the low frequency resonant response. The red arrows indicate the induced surface current density, and the color represents the electric field norm. The incident field is configured as indicated in OE1 of Fig. 1.

Fig. 5.
Fig. 5.

Numerical simulation results of complementary planar metamaterials. All simulations are for the low frequency resonant response. The red arrows indicate the induced surface current density, and the color represents the electric field norm. The incident field is configured as indicated in CE1 of Fig. 1.

Fig. 6.
Fig. 6.

Extracted frequency dependent dielectric function for the original metamaterials assuming a cubic unit cell. The red and blue curves show the real and imaginary parts of the complex dielectric function.

Fig. 7.
Fig. 7.

Extracted frequency dependent dielectric function for the complementary metamaterials assuming a cubic unit cell. The red and blue curves show the real and imaginary parts of the complex dielectric function.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E c Z 0 H = E 0 c , H c + E Z 0 = H 0 c
t ( ω ) = t c ( ω ) = 1 .

Metrics