Abstract

Silk fibroin is emerging as an important biomaterial for tissue engineering applications. The ability to monitor non-invasively the structural conformation of silk matrices prior to and following cell seeding could provide important insights with regards to matrix remodeling and cell-matrix interactions that are critical for the functional development of silk-based engineered tissues. Thus, we examined the potential of intrinsic fluorescence as a tool for assessing the structural conformation of silk proteins. Specifically, we characterized the intrinsic fluorescence spectra of silk in solution, gel and scaffold configurations for excitation in the 250 to 335 nm range and emission from 265 to 600 nm. We have identified spectral components that are attributed to tyrosine, tryptophan and crosslinks based on their excitation-emission profiles. We have discovered significant spectral shifts in the emission profiles and relative contributions of these components among the silk solution, gel and scaffold samples that represent enhancements in the levels of crosslinking, hydrophobic and intermolecular interactions that are consistent with an increase in the levels of β-sheet formation and stacking. This information can be easily utilized for the development of simple, non-invasive, ratiometric methods to assess and monitor the structural conformation of silk in engineered tissues.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science, 2nd ed. (Elsevier Academic Press, San Diego, 2004).
  2. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
    [CrossRef]
  3. G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
    [CrossRef] [PubMed]
  4. G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
    [CrossRef]
  5. H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
    [CrossRef] [PubMed]
  6. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
    [CrossRef] [PubMed]
  7. R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
    [CrossRef] [PubMed]
  8. V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
    [CrossRef] [PubMed]
  9. V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
    [PubMed]
  10. U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
    [CrossRef]
  11. L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
    [CrossRef] [PubMed]
  12. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
    [CrossRef]
  13. L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
    [CrossRef] [PubMed]
  14. L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
    [CrossRef] [PubMed]
  15. L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
    [CrossRef] [PubMed]
  16. Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
    [CrossRef] [PubMed]
  17. Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
    [CrossRef] [PubMed]
  18. R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
    [CrossRef]
  19. H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
    [CrossRef]
  20. Y. K. Reshetnyak and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins," Biophys J 81(3), 1710-1734 (2001).
    [CrossRef] [PubMed]
  21. Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
    [CrossRef] [PubMed]
  22. C. Cantor and P. Schimmel, Biophysical Chemistry Part II:Techniques for the study of biological structure and function, 1st ed. (W.H. Freeman and Company, New York, 1980).
  23. T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
    [CrossRef] [PubMed]
  24. I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
    [CrossRef] [PubMed]
  25. C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
    [CrossRef] [PubMed]
  26. H. J. Jin and D. L. Kaplan, "Mechanism of silk processing in insects and spiders," Nature 424(6952), 1057-1061 (2003).
    [CrossRef] [PubMed]
  27. S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
    [CrossRef]
  28. U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
    [CrossRef]
  29. D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
    [CrossRef] [PubMed]
  30. R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
    [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Second ed. (Kluwer Academic/Plenum Publishers, New York, NY, 1999).
  32. B. Lotz, "Crystal structure of polyglycine I," J Mol Biol 87(2), 169-180 (1974).
    [CrossRef] [PubMed]
  33. R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
    [CrossRef] [PubMed]
  34. D. L. Kaplan, W. Adams, B. Farmer, and C. Viney, eds., Silk Polymers: Science and Biotechnology, (American Chemical Society Symposium Series 1994), Vol. 544.
  35. E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
    [CrossRef] [PubMed]
  36. D. Malencik and S. Anderson, "Dityrosine as a product of oxidative stress and fluorescent probe," Amino Acids 25, 233-247 (2003).
    [CrossRef] [PubMed]

2006 (2)

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

2005 (7)

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

2004 (7)

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
[CrossRef] [PubMed]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

2003 (3)

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

H. J. Jin and D. L. Kaplan, "Mechanism of silk processing in insects and spiders," Nature 424(6952), 1057-1061 (2003).
[CrossRef] [PubMed]

D. Malencik and S. Anderson, "Dityrosine as a product of oxidative stress and fluorescent probe," Amino Acids 25, 233-247 (2003).
[CrossRef] [PubMed]

2002 (2)

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

2001 (5)

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins," Biophys J 81(3), 1710-1734 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
[CrossRef] [PubMed]

T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

1999 (1)

I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
[CrossRef] [PubMed]

1996 (1)

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

1994 (1)

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

1974 (1)

B. Lotz, "Crystal structure of polyglycine I," J Mol Biol 87(2), 169-180 (1974).
[CrossRef] [PubMed]

1955 (1)

R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
[CrossRef] [PubMed]

Abornev, S. M.

E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
[CrossRef] [PubMed]

Altman, G. H.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Anderson, S.

D. Malencik and S. Anderson, "Dityrosine as a product of oxidative stress and fluorescent probe," Amino Acids 25, 233-247 (2003).
[CrossRef] [PubMed]

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

Antle, K.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

Blasioli, D. J.

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

Burgess, L.

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Burstein, E. A.

E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins," Biophys J 81(3), 1710-1734 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
[CrossRef] [PubMed]

Calabro, T.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Cebe, P.

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

Chen, J.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

Collette, A. L.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

Confalonieri, F.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Corey, R. B.

R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
[CrossRef] [PubMed]

Diaz, F.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

Doyle, T. C.

T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
[CrossRef] [PubMed]

Duguet, M.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Esnault, C.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Fajardo, R.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

Gronowicz, G.

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

Hansen, J. E.

T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
[CrossRef] [PubMed]

Henshaw, J.

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Hofmann, S.

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

Horan, R. L.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Huang, J.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

Jacquet, M.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Jakuba, C.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

Janin, J.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Jin, H. J.

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
[CrossRef] [PubMed]

H. J. Jin and D. L. Kaplan, "Mechanism of silk processing in insects and spiders," Nature 424(6952), 1057-1061 (2003).
[CrossRef] [PubMed]

Kaplan, D.

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

Kaplan, D. L.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

H. J. Jin and D. L. Kaplan, "Mechanism of silk processing in insects and spiders," Nature 424(6952), 1057-1061 (2003).
[CrossRef] [PubMed]

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

Karageorgiou, V.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

Kim, H. J.

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

Kim, H. S.

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

Kim, U. J.

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

Kirker-Head, C.

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

Koshevnik, Y.

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
[CrossRef] [PubMed]

Kowalski, B.

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Kuznetsova, I. M.

I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
[CrossRef] [PubMed]

Langer, R.

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

Li, C.

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

Li, Z. G.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Lotz, B.

B. Lotz, "Crystal structure of polyglycine I," J Mol Biol 87(2), 169-180 (1974).
[CrossRef] [PubMed]

Lu, H.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

Lu, H. H.

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

Malencik, D.

D. Malencik and S. Anderson, "Dityrosine as a product of oxidative stress and fluorescent probe," Amino Acids 25, 233-247 (2003).
[CrossRef] [PubMed]

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

Malhotra, A.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

Marsh, R. E.

R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
[CrossRef] [PubMed]

Martin, I.

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

McCarthy, M. B.

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

McCool, J.

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

Medina, N.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Meinel, L.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

Moreau, J.

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

Moreau, J. E.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

Nazarov, R.

R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
[CrossRef] [PubMed]

Park, J.

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

Pauling, L.

R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
[CrossRef] [PubMed]

Perasso, R.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Reisler, E.

T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
[CrossRef] [PubMed]

Reshetnyak, Y. K.

Y. K. Reshetnyak and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins," Biophys J 81(3), 1710-1734 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
[CrossRef] [PubMed]

E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
[CrossRef] [PubMed]

Richmond, J.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

Richmond, J. C.

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Ryder, D.

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Shinde-Patil, V.

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

Smilde, A.

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Snyder, B.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

Sofia, S.

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

Sprouse, J.

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

Stark, P.

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Swanson, C.

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

Tauler, R.

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Tomkins, M.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

Turoverov, K. K.

I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
[CrossRef] [PubMed]

Valluzzi, R.

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

Volloch, V.

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

Vunjak-Novakovic, G.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

Wada, M.

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

Wade, K.

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

Wang, Y.

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

Yakusheva, T. A.

I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
[CrossRef] [PubMed]

Yang, T.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Zhou, C. Z.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Zichner, L.

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

Zivanovic, Y.

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Advanced Functional Materials (1)

H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, and D. Kaplan, "Water-stable films with reduced beta-sheet content," Advanced Functional Materials 15(8), 1241-1247 (2005).
[CrossRef]

Amino Acids (1)

D. Malencik and S. Anderson, "Dityrosine as a product of oxidative stress and fluorescent probe," Amino Acids 25, 233-247 (2003).
[CrossRef] [PubMed]

Analytical Biochemistry (1)

D. Malencik, J. Sprouse, C. Swanson, and S. Anderson, "Dityrosine: Preparation, Isolation and Analysis," Analytical Biochemistry 242, 202-213 (1996).
[CrossRef] [PubMed]

Analytical Chemistry (1)

R. Tauler, A. Smilde, J. Henshaw, L. Burgess, and B. Kowalski, "Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Chemical speciation using multivatiate curve resolution," Analytical Chemistry 66, 3337-3344 (1994).
[CrossRef]

Ann Biomed Eng (1)

L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, and G. Vunjak-Novakovic, "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow," Ann Biomed Eng 32(1), 112-122 (2004).
[CrossRef] [PubMed]

Biochim Biophys Acta (1)

R. E. Marsh, R. B. Corey, and L. Pauling, "An investigation of the structure of silk fibroin," Biochim Biophys Acta 16(1), 1-34 (1955).
[CrossRef] [PubMed]

Biomacromolecules (3)

H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, "Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)," Biomacromolecules 5(3), 711-717 (2004).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, "Structure and properties of silk hydrogels," Biomacromolecules 5(3), 786-792 (2004).
[CrossRef] [PubMed]

R. Nazarov, H. J. Jin, and D. L. Kaplan, "Porous 3-D scaffolds from regenerated silk fibroin," Biomacromolecules 5(3), 718-726 (2004).
[CrossRef] [PubMed]

Biomaterials (8)

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24(3), 401-416 (2003).
[CrossRef]

G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, "Silk matrix for tissue engineered anterior cruciate ligaments," Biomaterials 23(20), 4131-4141 (2002).
[CrossRef] [PubMed]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "The inflammatory responses to silk films in vitro and in vivo," Biomaterials 26(2), 147-155 (2005).
[CrossRef]

Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, "Cartilage tissue engineering with silk scaffolds and human articular chondrocytes," Biomaterials 27(25), 4434-4442 (2006).
[CrossRef] [PubMed]

Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials 26(34), 7082-7094 (2005).
[CrossRef] [PubMed]

R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, "In vitro degradation of silk fibroin," Biomaterials 26(17), 3385-3393 (2005).
[CrossRef]

U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin," Biomaterials 26(15), 2775-2785 (2005).
[CrossRef]

Biophys J (3)

E. A. Burstein, S. M. Abornev, and Y. K. Reshetnyak, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms," Biophys J 81(3), 1699-1709 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins," Biophys J 81(3), 1710-1734 (2001).
[CrossRef] [PubMed]

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, "Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues," Biophys J 81(3), 1735-1758 (2001).
[CrossRef] [PubMed]

Biophysical Journal (1)

T. C. Doyle, J. E. Hansen, and E. Reisler, "Tryptophan fluorescence of yeast actin resolved via conserved mutations," Biophysical Journal 80(1), 427-434 (2001).
[CrossRef] [PubMed]

Biotechnol Bioeng (1)

L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, and G. Vunjak-Novakovic, "Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioeng 88(3), 379-391 (2004).
[CrossRef] [PubMed]

Bone (1)

L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, "Silk implants for the healing of critical size bone defects," Bone 37(5), 688-698 (2005).
[CrossRef] [PubMed]

Febs Letters (1)

I. M. Kuznetsova, T. A. Yakusheva, and K. K. Turoverov, "Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure," Febs Letters 452(3), 205-210 (1999).
[CrossRef] [PubMed]

J Biomech Eng (1)

G. H. Altman, H. H. Lu, R. L. Horan, T. Calabro, D. Ryder, D. L. Kaplan, P. Stark, I. Martin, J. C. Richmond, and G. Vunjak-Novakovic, "Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering," J Biomech Eng 124(6), 742-749 (2002).
[CrossRef]

J Biomed Mater Res (1)

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, "Functionalized silk-based biomaterials for bone formation," J Biomed Mater Res 54(1), 139-148 (2001).
[CrossRef]

J Biomed Mater Res A (3)

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, "Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells," J Biomed Mater Res A 71(3), 528-537 (2004).
[CrossRef] [PubMed]

V. Karageorgiou, M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, and D. L. Kaplan, "Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo," J Biomed Mater Res A 78(2), 324-334 (2006).
[PubMed]

L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," J Biomed Mater Res A 71(1), 25-34 (2004).
[CrossRef] [PubMed]

J Mol Biol (1)

B. Lotz, "Crystal structure of polyglycine I," J Mol Biol 87(2), 169-180 (1974).
[CrossRef] [PubMed]

Nature (1)

H. J. Jin and D. L. Kaplan, "Mechanism of silk processing in insects and spiders," Nature 424(6952), 1057-1061 (2003).
[CrossRef] [PubMed]

Nucleic Acids Res (1)

C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, "Fine organization of Bombyx mori fibroin heavy chain gene," Nucleic Acids Res 28(12), 2413-2419 (2000).
[CrossRef] [PubMed]

Other (4)

B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science, 2nd ed. (Elsevier Academic Press, San Diego, 2004).

D. L. Kaplan, W. Adams, B. Farmer, and C. Viney, eds., Silk Polymers: Science and Biotechnology, (American Chemical Society Symposium Series 1994), Vol. 544.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Second ed. (Kluwer Academic/Plenum Publishers, New York, NY, 1999).

C. Cantor and P. Schimmel, Biophysical Chemistry Part II:Techniques for the study of biological structure and function, 1st ed. (W.H. Freeman and Company, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic flow of data analysis steps for silk solution and gel samples (left panel). The slightly modified approach to extract the spectral components contributing to the silk scaffold fluorescence is shown on the right panel.

Fig. 2.
Fig. 2.

Conformational transitions of silk fibroin protein from solution to gel to 3D scaffold; and relationship between the folding of a single chain of B. mori silkworm silk heavy chain fibroin and its primary sequence. The tyrosine (y) and tryptophan (w) residues are highlighted.

Fig. 3.
Fig. 3.

(A) Fluorescence excitation-emission matrix of silk in solution. Arrows indicate major contributions from tyrosine, tryptophan and cross-links. Representative fluorescence emission spectra acquired at 265 nm (panel B) and 310 nm (panel C) from silk in solution, gel and scaffold configurations are shown as solid lines. The corresponding fits achieved using the ALS scheme outlined in Fig. 1 are shown as dashed lines.

Fig. 4.
Fig. 4.

Fluorescence emission spectra of the components extracted from ALS analysis of silk in solution (A), gel (B) and scaffold (C) configuration.

Fig. 5.
Fig. 5.

Comparison of the spectral features of the components attributed to (A) tryptophan 1, (B) tryptophan 2, (C) tryptophan 3, and (D) crosslinks from each type of silk sample. Measured spectra from a tryptophan (A), tyrosine and dityrosine (D) solution are also included.

Fig. 6.
Fig. 6.

(A). The ratio of tryptophan to tyrosine fluorescence detected at 275 nm excitation and (B) the level of fluorescence attributed to crosslinks relevant to the overall amino acid (tyr and trp) fluorescence increase as silk achieves increasing levels of β-sheet conformation in its solution, gel and scaffold configurations.

Tables (2)

Tables Icon

Table 1. Measures of fit quality of silk spectra using the ALS-based algorithm

Tables Icon

Table 2. Summary of spectral components of the components used to describe silk samples

Metrics