Abstract

All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  2. K. Mishina,  et al., "NRZ-OOK-to-RZ-BPSK Modulation-Format Conversion Using SOA-MZI Wavelength Converter," J. Lightwave Technol. 24, 3751-3758 (2006).
    [CrossRef]
  3. C. Yan,  et al., "All-optical format conversion from NRZ to BPSK using a single saturated SOA," IEEE Photon. Technol. Lett. 18, 2368-2370 (2006).
    [CrossRef]
  4. K. Petermann, "Noise suppression properties of an interferometer based regenerator for differential phase-shift keying data," Opt. Lett. 32, 112-114 (2007).
    [CrossRef]
  5. G. Toptchiski,  et al., "Analysis of switching windows in a gain-transparent-SLALOM configuration," J. Lightwave Technol. 18, 2188-2195 (2000).
    [CrossRef]
  6. F. Stern, "Dispersion of the index of refraction near the absorption edge of semiconductors," Phys. Rev. A,  133, 1653-1664 (1964).
  7. J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
    [CrossRef]
  8. J. Park and X. Li, "Theoretical and numerical analysis of superluminescent diodes," J. Lightwave Technol. 24, 2473-2480 (2006).
    [CrossRef]
  9. G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers. (New York: Van Nostrand Reinhold, 1993), Chap. 3
  10. C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
    [CrossRef]

2007 (1)

2006 (3)

2005 (2)

J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

2004 (1)

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

2000 (1)

1964 (1)

F. Stern, "Dispersion of the index of refraction near the absorption edge of semiconductors," Phys. Rev. A,  133, 1653-1664 (1964).

Gnauck, A. H.

Huang, W. -P.

J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
[CrossRef]

Li, X.

J. Park and X. Li, "Theoretical and numerical analysis of superluminescent diodes," J. Lightwave Technol. 24, 2473-2480 (2006).
[CrossRef]

J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
[CrossRef]

Liu, X.

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

Mishina, K.

Park, J.

J. Park and X. Li, "Theoretical and numerical analysis of superluminescent diodes," J. Lightwave Technol. 24, 2473-2480 (2006).
[CrossRef]

J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
[CrossRef]

Petermann, K.

Stern, F.

F. Stern, "Dispersion of the index of refraction near the absorption edge of semiconductors," Phys. Rev. A,  133, 1653-1664 (1964).

Toptchiski, G.

Wei, X.

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

Winzer, P. J.

Xu, C.

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

Yan, C.

C. Yan,  et al., "All-optical format conversion from NRZ to BPSK using a single saturated SOA," IEEE Photon. Technol. Lett. 18, 2368-2370 (2006).
[CrossRef]

IEE Proc.-Optoelectron. (1)

J. Park, X. Li, and W. -P. Huang, "Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.-Optoelectron. 152, 151-159 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for High Spectral Efficiency Optical Transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Yan,  et al., "All-optical format conversion from NRZ to BPSK using a single saturated SOA," IEEE Photon. Technol. Lett. 18, 2368-2370 (2006).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (1)

Phys. Rev. A (1)

F. Stern, "Dispersion of the index of refraction near the absorption edge of semiconductors," Phys. Rev. A,  133, 1653-1664 (1964).

Other (1)

G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers. (New York: Van Nostrand Reinhold, 1993), Chap. 3

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

schematic of OOK-to-BSPK format conversion involving gain-transparent SOA used as an optical phase-modulation.

Fig. 2.
Fig. 2.

Waveform of input OOK signal (a), the phase of the converted BPSK signal (b) and the waveform of demodulated signal at destructive output port of DI (c)

Fig. 3.
Fig. 3.

Differential-phase-Q of converted BPSK signal (a), average phase difference between “0” and “1” and pattern effect (b) of converted BPSK signal at the transparent probe wavelength for different ERs of the input OOK signal.

Fig. 4.
Fig. 4.

Differential-phase-Q of converted BPSK signal at the transparent probe wavelength with holding light injection.

Fig. 5.
Fig. 5.

Average phase difference between “0” and “1” and pattern effect of converted BPSK signal at the transparent probe wavelength with holding light injection. (a) ER=10dB, (b) ER=13dB

Fig. 6.
Fig. 6.

Normalized input power and phase-shift at the transparent probe wavelength with holding light injection.

Fig. 7.
Fig. 7.

Differential-phase-Q (a), average phase difference and pattern effect (b) of converted BPSK signal at the transparent probe wavelength for different modulation format of the OOK signal.

Tables (1)

Tables Icon

Table1 physical parameters of the SOA used in simulation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P s ( z , t , ν 1 , 2 ) z = ( Γ g ( z , t , ν 1 , 2 ) α ) · P s ( z , t , ν 1 , 2 )
± P ( f , b ) ( z , t , ν k ) z = ( Γ g ( z , t , ν k ) α ) · P ( f , b ) ( z , t , ν k ) + β s p R s p ( z , t , ν k ) ( h Δ ν ) ( h ν A )
g ( E ) = R s t ( E ) R a b ( E )
= e 2 h M b 2 4 π 2 ε 0 m 0 2 c n 2 E ( 8 π 2 m r h 2 ) 3 2 ( E E g ) 1 2 ( f c ( E c ) + f v ( E v ) 1 )
R s p ( E ) = 2 n 2 e 2 E M b 2 π ε 0 m 0 2 h 2 c 3 ( 8 π 2 m r h 2 ) 3 2 ( E E g ) 1 2 ( f c ( E c ) f v ( E v ) )
N ( z , t ) t = I e V N ( z , t ) τ R AS E ( z , t ) R s i g ( z , t )
R A S E ( z , t ) = k = 1 , N d 2 Γ g ( z , t , ν k ) [ P f ( z , t , ν k ) + P b ( z , t , ν k ) ] h ν k A
R s i g ( z , t ) = Γ g ( z , t , ν 1 ) P s ( z , t , ν 1 ) h ν 1 A + Γ g ( z , t , ν 2 ) P s ( z , t , ν 2 ) h ν 2 A
ϕ ( z , t ) = 1 2 Γ α N d g d N ( N ( z , t ) N s t ( z ) ) Δ z
ϕ ( z , t ) = Γ 2 π λ dn d N ( N ( z , t ) N s t ( z ) ) Δ z
Q Δ ϕ = π σ Δ ϕ , 0 + σ Δ ϕ , π

Metrics