Abstract

We successfully demonstrated a low-loss, flat-passband, and athermal arrayed-waveguide grating (AWG) multi/demultiplexer with a Mach-Zehnder interferometer (MZI) as an input router. Resin-filled trenches were formed in the longer arm of the MZI as well as the slab in the AWG to compensate for the temperature dependence. A 32-channel athermal multi/demultiplexer was fabricated using silica-based planar lightwave circuit (PLC) technology. A small temperature-dependent wavelength shift of 0.02 nm was obtained over the temperature range of-5 to 65oC with low-loss (3.3-3.7 dB) and flat-passband spectra.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20, 43–45 (1995).
    [Crossref] [PubMed]
  2. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
    [Crossref]
  3. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
    [Crossref]
  4. C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16, 1895–1906 (1998).
    [Crossref]
  5. T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” J. Lightwave Technol. 19, 1716–1725 (2001).
    [Crossref]
  6. J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8, 1186–1193 (2002).
    [Crossref]
  7. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.
  8. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
    [Crossref]
  9. M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
    [Crossref]
  10. C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8, 1168–1178 (2002).
    [Crossref]
  11. C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
    [Crossref]
  12. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
    [Crossref]
  13. K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 544–555 (2007).
    [Crossref]
  14. K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multiinput arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 2187–2197 (2007).
    [Crossref]
  15. Y. Inoue, A. Kaneko, and F. Hanawa, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33–36.
  16. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.
  17. K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.
  18. K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
    [Crossref]
  19. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electron. 22, 391–416 (1990).
    [Crossref]
  20. M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.
  21. Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.
  22. K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
    [Crossref]

2007 (3)

2005 (1)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

2004 (1)

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

2003 (1)

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
[Crossref]

2002 (4)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8, 1186–1193 (2002).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8, 1168–1178 (2002).
[Crossref]

2001 (1)

1998 (1)

1996 (2)

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[Crossref]

1995 (1)

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electron. 22, 391–416 (1990).
[Crossref]

Abe, Y.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

Amersfoort, M. R.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Andreadakis, N. C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Caneau, C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Cappuzzo, M. A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

Chen, E. Y.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

Day, S.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Doerr, C. R.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

Dragone, C.

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8, 1168–1178 (2002).
[Crossref]

C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16, 1895–1906 (1998).
[Crossref]

Epworth, R.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Gomez, L. T.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

Hakuta, T.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

Hanawa, F.

Y. Inoue, A. Kaneko, and F. Hanawa, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33–36.

Hashizume, Y.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

He, J.-J.

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8, 1186–1193 (2002).
[Crossref]

Hibino, Y.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

Himeno, A.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

Himi, S.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

Inoue, Y.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

Y. Inoue, A. Kaneko, and F. Hanawa, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33–36.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

Ishikawa, H.

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

Itoh, M.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

Kamalakis, T.

Kamei, S.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

Kaneko, A.

Y. Inoue, A. Kaneko, and F. Hanawa, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33–36.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

Kashimura, S.

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electron. 22, 391–416 (1990).
[Crossref]

Kitoh, I.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

Kohtoku, M.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

LeBlanc, H. P.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Maru, K.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 544–555 (2007).
[Crossref]

K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multiinput arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 2187–2197 (2007).
[Crossref]

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

Matsui, K.

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

Matsumoto, K.

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

Mizumoto, T.

Nounen, H.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

Ohkawa, M.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

Ojha, S.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Okamoto, K.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[Crossref]

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20, 43–45 (1995).
[Crossref] [PubMed]

Okano, H.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

Okawa, M.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

Pafchek, R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

Rajhel, A.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Rogers, C.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Shibata, I.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

Shunk, S.

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

Soole, J. B. D.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

Sphicopoulos, T.

Stulz, L. W.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

Sugita, A.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[Crossref]

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

Takahashi, H.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

Takasugi, S.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

Thompson, G. H. B.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Uetsuka, H.

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 544–555 (2007).
[Crossref]

K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multiinput arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25, 2187–2197 (2007).
[Crossref]

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

Wong-Foy, A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

Yamada, H.

Electron. Lett. (5)

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996).
[Crossref]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[Crossref]

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38, 792–794 (2002).
[Crossref]

K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004).
[Crossref]

K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, “Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment,” Electron. Lett. 43, 26–27 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15, 1088–1090 (2003).
[Crossref]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangularpassband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17, 2334–2336 (2005).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14, 56–58 (2002).
[Crossref]

in Proceedings of 24th European Conference on Optical Communication (ECOC ’98) (1)

M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, “Low loss and wide passband arrayed waveguide grating demultiplexer,” in Proceedings of 24th European Conference on Optical Communication (ECOC ’98),  vol. 1, pp. 323–324.

J. Lightwave Technol. (4)

J. Select. Topics Quantum Electron. (2)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8, 1186–1193 (2002).
[Crossref]

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8, 1168–1178 (2002).
[Crossref]

Opt. Lett. (1)

Optical and Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electron. 22, 391–416 (1990).
[Crossref]

Other (5)

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “Novel birefringence compensating AWG design,” in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.

Y. Inoue, A. Kaneko, and F. Hanawa, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33–36.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204–206.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130–132.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical circuit of flat-passband athermal multi/demultiplexer.

Fig. 2.
Fig. 2.

Layout of 32-channel multi/demultiplexer with 100-GHz channel spacing.

Fig. 3.
Fig. 3.

Spectral responses for 16th output port of fabricated chips (a) with resin-filled trenches, and (b) without resin-filled trenches.

Fig. 4.
Fig. 4.

Chromatic dispersion for 16th output port of fabricated chip with resin-filled trenches.

Fig. 5.
Fig. 5.

Spectral responses for all 32 output ports of chip with resin-filled trenches.

Tables (1)

Tables Icon

Table 1. Design parameters of 32-channel athermal multi/demultiplexer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ S = ( n r n s ) L t D θ L s ,
d d T ( Δ S + n a Δ A W G ) = 0 ,
θ = L s Δ L L t D d n a d T + n a α d n s d T d n r d T + ( n s n r ) α ,
d d T ( S t r + n a Δ L M Z I ) = 0 ,

Metrics