Abstract

The influence of the fiber geometry on the point-by-point inscription of fiber Bragg gratings using a femtosecond laser is highlighted. Fiber Bragg gratings with high spectral quality and strong first-order Bragg resonances within the C-band are achieved by optimizing the inscription process. Large birefringence (1.2×10-4) and high degree of polarizationdependent index modulation are observed in these gratings. Potential applications of these gratings in resonators are further illustrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
    [CrossRef]
  2. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, "Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription," Opt. Lett. 31, 1672-1674 (2006).
    [CrossRef] [PubMed]
  3. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, "Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating," Opt. Lett. 32, 1486-1489 (2007).
    [CrossRef] [PubMed]
  4. Y. Cheng, K. Sugioka, and K. Midorikawa,  et al, "Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser," Opt. Lett. 28, 55-57 (2003).
    [CrossRef] [PubMed]
  5. F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
    [CrossRef]
  6. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
    [CrossRef]
  7. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, "Micro-channels in conventional single-mode fibers," Opt. Lett. 31, 2559-2561 (2006).
    [CrossRef] [PubMed]
  8. K. M. Davies, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef]
  9. P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the birefringence in fiber Bragg gratings fabricated with an ultra-fast infrared laser," J. Lightwave Technol. 25, 779-786 (2007).
    [CrossRef]
  10. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, "Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass," Opt. Lett. 31, 3495-3497 (2006).
    [CrossRef] [PubMed]
  11. M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. O. Berendt, O. Hadeler, M. N. Zervas, and R. I. Laming, "Robust high power (>20mW) all-fiber DFB lasers with unidirectional and truly single polarization outputs," in Conference on Lasers and Electro-Optics, paper CWE4, 245-246 (1999).

2007

2006

2004

F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

2003

1996

1993

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Albert, J.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Bennion, I.

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Cheng, Y.

Davies, K. M.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Eaton, S. M.

Fertein, E.

F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

Fuerbach, A.

Grobnic, D.

Herman, P. R.

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Hindle, F.

F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

Hirao, K.

Jackson, S. D.

Johnson, D. C.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Jovanovic, N.

Khrushchev, I.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, "Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription," Opt. Lett. 31, 1672-1674 (2006).
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Lai, Y.

Li, J.

Lu, P.

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

Marshall, G. D.

Martinez, A.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, "Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription," Opt. Lett. 31, 1672-1674 (2006).
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Midorikawa, K.

Mihailov, S. J.

Miura, K.

Przygodzki, C.

F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

Sugimoto, N.

Sugioka, K.

Withford, M. J.

Zhang, H.

Zhang, L.

Zhou, K.

Electron. Lett.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett. 29, 1668-1669 (1993).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fiber Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Hindle, E. Fertein, and C. Przygodzki,  et al., "Inscription of long period gratings in pure silica and germo-silicate fiber cores by femtosecond laser irradiation," IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. O. Berendt, O. Hadeler, M. N. Zervas, and R. I. Laming, "Robust high power (>20mW) all-fiber DFB lasers with unidirectional and truly single polarization outputs," in Conference on Lasers and Electro-Optics, paper CWE4, 245-246 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microscope images of 3µm-period grating structures in a single-mode fiber where the inscription laser focus is positioned at different distances from the core. The fringe visibility and intensity of the gratings decrease as the laser focus is positioned closer towards the core.

Fig. 2.
Fig. 2.

Microscope images of 3µm-period grating structures inscribed in a single-mode fiber using 120nJ pulse energy. Distortion to the inscription laser beam due to the fiber surface geometry was alleviated during fabrication. The grating structures remain consistent regardless the positions of the beam focus within the fiber.

Fig. 3.
Fig. 3.

Microscope images of (a) a first-order Bragg grating structure and, (b) a second-order Bragg grating structure, inscribed in standard single-mode fibers. Note that the measurement resolution is limited to 0.1µm.

Fig. 4.
Fig. 4.

Superimposed measured and simulated (grey) spectral transmission profiles of the firstorder fiber Bragg grating along orthogonal polarization states. The Bragg wavelengths at orthogonal polarization states are denoted as λ s and λ p respectively. Inset shows the measured spectra profiles which highlight the short wavelength lossy cladding modes. Note that the spectral profile along the p-polarization is drawn in grey.

Fig. 5.
Fig. 5.

Superimposed measured and simulated (grey) transmission spectral profiles along orthogonal polarization states of second-order fiber Bragg gratings fabricated using (a) 75nJ and, (b) 105nJ. The difference between Bragg wavelengths along orthogonal polarizations is denoted as Δλpol. All spectra profiles are scaled identically for comparison.

Fig. 6.
Fig. 6.

Superimposed measured and simulated (grey) spectral transmission profiles of the Fabry-Perot first-order FBG cavity along orthogonal s-and p-polarization states.

Metrics