Abstract

With the development of in-vivo free-space fluorescence molecular imaging and multi-modality imaging for small animals, there is a need for new reconstruction methods for real animal-shape models with a large dataset. In this paper we are reporting a novel hybrid adaptive finite element algorithm for fluorescence tomography reconstruction, based on a linear scheme. Two different inversion strategies (Conjugate Gradient and Landweber iterations) are separately applied to the first mesh level and the succeeding levels. The new algorithm was validated by numerical simulations of a 3-D mouse atlas, based on the latest free-space setup of fluorescence tomography with 360° geometry projections. The reconstructed results suggest that we are able to achieve high computational efficiency and spatial resolution for models with irregular shape and inhomogeneous optical properties.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
    [CrossRef] [PubMed]
  3. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  4. J. Chang, H. L. Graber, and R. L. Barbour, "Luminescence optical tomography of dense scattering media," J. Opt. Soc. Am. A 14, 288-299 (1997).
    [CrossRef] [PubMed]
  5. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  6. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
    [CrossRef] [PubMed]
  7. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
    [CrossRef] [PubMed]
  8. X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
    [CrossRef] [PubMed]
  9. A. Joshi, W. Bangerth, and E.M. Sevick-Muraca, "Adaptive finite element based tomography for fluorescence optical imaging in tissue," Opt. Express 12, 5402-5417 (2004).
    [CrossRef] [PubMed]
  10. J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Fully adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007).
    [CrossRef] [PubMed]
  11. D. Wang, X. Song, and J. Bai, "A novel adaptive mesh based algorithm for fluorescence molecular tomography using analytical solution," Opt. Express 15,9722-9730 (2007).
    [CrossRef] [PubMed]
  12. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
    [CrossRef] [PubMed]
  13. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
    [CrossRef] [PubMed]
  14. D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
    [CrossRef]
  15. X. Li, B. Chance, and A. G. Yodh, "Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption," Appl. Opt. 37, 6833-6844 (1998).
    [CrossRef]
  16. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  17. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  18. S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
    [CrossRef]
  19. S.  Bjoern, S. V.  Patwardhan, and J. P.  Culver, "The influence of Heterogeneous optical properties upon fluorescence diffusion Tomography of small animals," Springer Proc. in Physics 114, 361-365 (2007).
    [CrossRef]
  20. B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
    [CrossRef]
  21. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
    [CrossRef] [PubMed]
  22. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
    [CrossRef] [PubMed]
  23. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite element based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  24. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
    [CrossRef] [PubMed]
  25. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  26. S. S. Rao, The Finite Element Method in Engineering, (Butterworth-Heinemann, Boston, 1999).
  27. W. Bangerth, "Adaptive finite element methods for the identification of distributed parameters in partial differential equations," Ph.D. thesis, University of Heidelberg (2002).
  28. M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).
  29. P. C. Hansen, "Analysis of Discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992).
    [CrossRef]
  30. L. Landweber, "An iteration formula for Fredholm integaral equations of the first kind," Am. J. Math. 73, 615-624 (1951).
    [CrossRef]
  31. G. A. Latham, "Best L2 Tikhonov Analogue for Landweber Iteration," Inverse Probl. 14, 1527-1537 (1998)
    [CrossRef]
  32. B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
    [CrossRef] [PubMed]
  33. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).
  34. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  35. T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
    [CrossRef] [PubMed]
  36. W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
    [CrossRef]
  37. L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).
  38. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction," J. Biomed. Opt. 10, 050501-1:3 (2005).
    [CrossRef]

2007 (8)

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Fully adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007).
[CrossRef] [PubMed]

D. Wang, X. Song, and J. Bai, "A novel adaptive mesh based algorithm for fluorescence molecular tomography using analytical solution," Opt. Express 15,9722-9730 (2007).
[CrossRef] [PubMed]

2006 (2)

V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

2005 (6)

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

2004 (3)

L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).

A. Joshi, W. Bangerth, and E.M. Sevick-Muraca, "Adaptive finite element based tomography for fluorescence optical imaging in tissue," Opt. Express 12, 5402-5417 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

2003 (4)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

1999 (1)

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

1998 (3)

1997 (1)

1996 (1)

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).

1992 (1)

P. C. Hansen, "Analysis of Discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992).
[CrossRef]

1951 (1)

L. Landweber, "An iteration formula for Fredholm integaral equations of the first kind," Am. J. Math. 73, 615-624 (1951).
[CrossRef]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Bai, J.

Bangerth, W.

Barbour, R. L.

Boas, D. A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

Bouman, C. A.

Brooks, D.

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

Brooksby, B.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Chance, B.

Chang, J.

Chatziioannou, A.

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaves, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Chorlton, M.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Chow, P.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Cong, A.

Cronin, E. B.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Davis, S.

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

Dehghani, H.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Deliolanis, N.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

Dunham, J.

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

Economou, E. N.

Gambhir, S.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Garofalakis, A.

Graber, H. L.

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Gu, X.

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Hanke, M.

M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).

Hansen, P. C.

M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).

P. C. Hansen, "Analysis of Discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992).
[CrossRef]

Hillman, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Hyde, D.

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

Jiang, H.

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite element based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
[CrossRef]

Jiang, S.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Joshi, A.

Kioussis, D.

Kogel, C.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Kopans, D. B.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Landweber, L.

L. Landweber, "An iteration formula for Fredholm integaral equations of the first kind," Am. J. Math. 73, 615-624 (1951).
[CrossRef]

Lasser, T.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

Latham, G. A.

G. A. Latham, "Best L2 Tikhonov Analogue for Landweber Iteration," Inverse Probl. 14, 1527-1537 (1998)
[CrossRef]

Leahy, R. M.

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Leblond, F.

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

Lee, J. H.

Lewis, X.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Li, A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Li, X.

Li, X. D.

Lu, G.

L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).

Mamalaki, C.

McCann, H.

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

Meyer, H.

Millane, R. P.

Miller, E.

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

Milstein, A. B.

Moore, R. H.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

O’Leary, M. A.

Oh, S.

Paulsen, K. D.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Peng, L. H.

L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).

Pogue, B. W.

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

Pogue, B.W.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Poplack, S.P.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Psycharakis, S.

Rafferty, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Ripoll, J.

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Sevick-Muraca, E.M.

Silverman, R.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Song, X.

Soubret, A.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Spink, D. M.

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Stott, J. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Stout, D.

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Wang, D.

Wang, G.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Weaver, J.

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Webb, K. J.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Wu, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Xu, Y.

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Yang, W. Q.

L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

Yodh, A. G.

York, T. A.

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

Zacharakis, G.

Zhang, Q.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Am. J. Math. (1)

L. Landweber, "An iteration formula for Fredholm integaral equations of the first kind," Am. J. Math. 73, 615-624 (1951).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

Appl. Opt. (4)

IEEE Trans. Med. Imaging (2)

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

Inverse Probl. (1)

G. A. Latham, "Best L2 Tikhonov Analogue for Landweber Iteration," Inverse Probl. 14, 1527-1537 (1998)
[CrossRef]

J. Biomed. Opt. (1)

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Tsinghua Univ. Meas. Sci. Technol. (1)

L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).

Meas. Sci. Technol. (1)

W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999).
[CrossRef]

Med. Image Anal. (1)

T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

Med. Phys. (3)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).

Nature Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Med. Biol. (2)

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006).
[CrossRef]

Proc. SPIE (2)

D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007).
[CrossRef]

Radiology (1)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

SIAM Rev. (1)

P. C. Hansen, "Analysis of Discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992).
[CrossRef]

Surv. Math. Ind. (1)

M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).

Other (4)

S. S. Rao, The Finite Element Method in Engineering, (Butterworth-Heinemann, Boston, 1999).

W. Bangerth, "Adaptive finite element methods for the identification of distributed parameters in partial differential equations," Ph.D. thesis, University of Heidelberg (2002).

S.  Bjoern, S. V.  Patwardhan, and J. P.  Culver, "The influence of Heterogeneous optical properties upon fluorescence diffusion Tomography of small animals," Springer Proc. in Physics 114, 361-365 (2007).
[CrossRef]

S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction," J. Biomed. Opt. 10, 050501-1:3 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Flow diagram for the hybrid adaptive finite element reconstruction algorithm

Fig. 2.
Fig. 2.

Mesh refinement method. (a) is the original tetrahedral element. (b) is the second generation elements after refinement.

Fig. 3.
Fig. 3.

Experimental setup and the geometrical model for a mouse abdomen part. The sketch of the free-space FMT system is illustrated in (a), which is similar to that in Ref. [6]. The plane of excitation sources is shown in (b) where the black points represent positions of the isotropic point sources. The points 01–y015 are the first excitation sources for the 15 projections and the points 016–030 are the second ones. The field of view (FOV) of 150° for detection with respect to the excitation source point 01 is also shown. (c) and (d) are different views of the mouse geometry model used in the reconstruction. In order to reduce the boundary artifacts, which interfere with the finite element computation, the model was generated by sampling the original atlas data (intersections of the vertical and horizontal lines) and then approximating the curves using spline function to form the kidney surface and the body surface.

Fig. 4.
Fig. 4.

The forward geometry model for generating surface measurements is shown in (a) and (b) with a fluorescent probe in the left kidney, where the red part represents the fluorescent probe. Different views for the mesh of tetrahedral elements are shown in (c) and (d).

Fig. 5.
Fig. 5.

(a). and (b). show different surface views of the reconstruction mesh in the initial mesh level.(c) plots of the Residual Error in the three mesh levels. See text for details.

Fig. 6.
Fig. 6.

Reconstruction results for a single fluorescence target embedded in the left kidney using the proposed algorithm. (a) the 3D reconstructed results obtained from the initial uniformly coarse mesh, with a threshold of 70% of the maximum value. (The red cylinders denote the real target). (b) the transverse view of the reconstruction at z=77 in the same mesh, where the white circle indicates the real fluorescence target. (c) and (d) the corresponding reconstruction using the refined, second mesh level. (e) and (f) the final reconstruction utilizing our algorithm, which is based on the third mesh level.

Fig. 7.
Fig. 7.

Reconstruction results for a single fluorescence target outside the kidneys using the proposed algorithm. (a) the 3D reconstructed results obtained from the initial uniformly coarse mesh, with a threshold of 70% of the maximum value. (The red cylinders denote the real target). (b) the transverse view of the reconstruction at z=77 in the same mesh, where the white circle indicates the real fluorescence target. (c) and (d) the corresponding reconstruction using the refined, second mesh level. (e) and (f) the final reconstruction utilizing our algorithm, which is based on the third mesh level.

Fig. 8.
Fig. 8.

Reconstruction results of double fluorescent targets in different discretized levels using the proposed algorithm. (a) the 3D reconstructed results obtained from the initial uniformly coarse mesh, with a threshold of 70% of the maximum value. (The red cylinders denote the real target). (b) the transverse view of the reconstruction at z=77 in the same mesh, where the white circle indicates the real fluorescence target. (c) and (d) the corresponding reconstruction using the refined, second mesh level. (e) and (f) the final reconstruction utilizing our algorithm, which is based on the third mesh level.

Fig. 9.
Fig. 9.

The transverse view of the reconstructed results at z=77, based on a fixed fine mesh with 7339 nodes and 34147 elements. For a single fluorescence target with the same size and location as in Fig. 6, the reconstruction results using CG is shown in (a), with a threshold of 70% of the maximum value. The corresponding results for two fluorescence targets with the same sizes and locations as in Fig. 8, with the same threshold as (a) is shown in (b),

Tables (3)

Tables Icon

Table 1. Summary of the reconstruction results for a single target

Tables Icon

Table 2. Summary of the reconstruction results for double targets

Tables Icon

Table 3. Comparison of reconstruction in a fixed mesh and using the proposed algorithm

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

{ D x ( r ) Φ x ( r ) μ ax ( r ) Φ x ( r ) = Θ s δ ( r r sl ) ( 1.1 ) D m ( r ) Φ m ( r ) μ am ( r ) Φ m ( r ) = Φ x ( r ) η μ af ( r ) ( 1.2 ) ,
2 D x , m Φ x , m n + q Φ x , m = 0 ,
{ Ω ( D x ( r ) Φ x ( r ) · ψ ( r ) + μ ax ( r ) Φ x ( r ) ψ ( r ) ) dr + Ω 1 2 q Φ x ( r ) ψ ( r ) dr = Ω Θ s δ ( r r sl ) ψ ( r ) dr ( 3.1 ) Ω ( D m ( r ) Φ m ( r ) · ψ ( r ) + μ am ( r ) Φ m ( r ) ψ ( r ) ) dr + Ω 1 2 q Φ m ( r ) ψ ( r ) dr = Ω Φ x ( r ) η μ af ( r ) ψ ( r ) dr ( 3.2 ) ,
Φ x , m ( r ) = i = 1 N p Φ xi , mi ψ i ( r ) ,
x ( r ) = η μ af ( r ) = i = l N p ( η μ af ) i γ i ( r ) = i = 1 N p x i · γ i ( r ) ,
[ K x ] { Φ x } = { L x }
[ K m ] { Φ m } = [ F ] { X }
{ Φ m , sl } = [ K m 1 ] · [ F sl ] · { X } = [ B sl ] · { X } ,
{ Φ m , sl Meas } = [ A sl ] · { X } .
{ Φ m , s 1 Meas Φ m , s 2 Meas Φ m , sL Meas } = [ A s 1 A s 2 A sL ] { η μ a f ( 1 ) η μ a f ( 2 ) η μ a f ( N p ) } = [ A ] { X } .
A k X k = Φ k mea
min x L x k x h E k ( X k ) = A k X k Φ k mea 2 2 + λ k η k ( X k ) .
X k + 1 0 = F k k + 1 ( X k )
X k + 1 n + 1 = X k + 1 n + α ( A k + 1 per ) T ( Φ k + 1 mea A k + 1 per X k + 1 n ) ,

Metrics