Abstract

Three-dimensional metallodielectric photonic crystals were created by fabricating a micron-scale polymeric template using multi-photon direct laser writing (DLW) in SU-8 and conformally and selectively coating the template with copper (Cu) via nanoparticle-nucleated electroless metallization. This process deposits a uniform metal coating, even deep within a lattice, because it is not directional like sputter-coating or evaporative deposition. Infrared reflectance spectra show that upon metallization the optical behavior transitions fully from a dielectric photonic crystal to that of a metal photonic crystal (MPC). After depositing 50 nm of Cu, the MPCs exhibit a strong plasmonic stop band having reflectance greater than 80% across the measured part of the band and reaching as high as 95% at some wavelengths. Numerical simulations match remarkably well with the experimental data and predict all dominant features observed in the reflectance measurements, showing that the MPCs are structurally well formed. These data show that the Cu-based process can be used to create high performance MPCs and devices that are difficult or impossible to fabricate by other means.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
    [CrossRef]
  2. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
    [CrossRef]
  3. J.-M. Lourtioz and A. de Lustrac, “Metallic photonic crystals,” C. R. Phys. 3, 79–88 (2002).
    [CrossRef]
  4. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [CrossRef] [PubMed]
  5. S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
    [CrossRef]
  6. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [CrossRef] [PubMed]
  7. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
    [CrossRef]
  8. H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).
  9. S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [CrossRef]
  10. J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
    [CrossRef]
  11. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
    [CrossRef]
  12. R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef] [PubMed]
  13. Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
    [CrossRef]
  14. M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
    [CrossRef]
  15. Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
    [CrossRef]
  16. S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.
  17. Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
    [CrossRef]
  18. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
    [CrossRef] [PubMed]
  19. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructure over large areas by two-photon polymerization,” Opt. Express 14, 800–809 (2006).
    [CrossRef] [PubMed]
  20. V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15, 8454–8464 (2007).
    [CrossRef] [PubMed]
  21. S. M. Kuebler and M. Rumi, “Nonlinear optics - applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel; eds. (Elsevier, Oxford, 2004).
  22. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef] [PubMed]
  23. G. Odian, Principles of Polymerization, in 4th edn., (Wiley, New York, 2004).
    [CrossRef]
  24. L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
    [CrossRef]
  25. A. Tal, “Three-dimensional micron-scale metal photonic crystals via multi-photon direct laser writing and electroless metal deposition.” Masters thesis, CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA (2007).
    [PubMed]
  26. W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
    [CrossRef]
  27. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
    [CrossRef] [PubMed]
  28. R. C. Rumpf, A. Tal, and S. M. Kuebler, “Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method,” J. Opt. Soc. Am. A 24, 3123–3134 (2007).
    [CrossRef]
  29. R. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198–7208 (2005).
    [CrossRef] [PubMed]
  30. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
    [CrossRef]
  31. M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
    [CrossRef]
  32. M. J. Weber, “Handbook of Optical Materials,” in (CRC Press, New York, 2003).
  33. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535–536 (1954).
    [CrossRef]
  34. A. M. Fox, Optical Properties of Solids, in (Oxford Univ. Press, Oxford, 2002).
  35. S. Roberts, “Optical properties of copper,” Phys. Rev. 118, 1509–1518 (1960).
    [CrossRef]
  36. A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
    [CrossRef]
  37. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
    [CrossRef] [PubMed]
  38. K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
    [CrossRef]
  39. R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
    [CrossRef]
  40. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, in (Kluwer, Boston, 2002).
  41. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12, 5221–5227 (2004).
    [CrossRef] [PubMed]
  42. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [CrossRef]
  43. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
    [CrossRef]
  44. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
    [CrossRef]

2007 (6)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
[CrossRef]

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15, 8454–8464 (2007).
[CrossRef] [PubMed]

R. C. Rumpf, A. Tal, and S. M. Kuebler, “Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method,” J. Opt. Soc. Am. A 24, 3123–3134 (2007).
[CrossRef]

2006 (6)

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructure over large areas by two-photon polymerization,” Opt. Express 14, 800–809 (2006).
[CrossRef] [PubMed]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

2005 (2)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

R. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198–7208 (2005).
[CrossRef] [PubMed]

2004 (5)

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12, 5221–5227 (2004).
[CrossRef] [PubMed]

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

2003 (2)

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

2002 (3)

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

J.-M. Lourtioz and A. de Lustrac, “Metallic photonic crystals,” C. R. Phys. 3, 79–88 (2002).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
[CrossRef]

2000 (2)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
[CrossRef]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

1998 (1)

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

1997 (1)

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

1995 (1)

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

1994 (1)

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

1960 (1)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118, 1509–1518 (1960).
[CrossRef]

1954 (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535–536 (1954).
[CrossRef]

Arrowood, R. M.

R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
[CrossRef]

Baughman, R. H.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Benisty, H.

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

Berger, V.

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

Biswas, R.

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Bossel, M.

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Braun, K. L.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Bur, J.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

Busch, K.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Calmes, S.

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Cammack, J. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Cervantes, R. L.

R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
[CrossRef]

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
[CrossRef]

S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

Chichkov, B.

Chiyoda, K.

Chumanov, G.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

Constant, K.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

de Lustrac, A.

J.-M. Lourtioz and A. de Lustrac, “Metallic photonic crystals,” C. R. Phys. 3, 79–88 (2002).
[CrossRef]

Demierre, M.

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Deubel, M.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Drechsler, U.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Dürig, U.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

El-Kady, I.

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Fan, S.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Farrer, R. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Fleming, G. R.

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Fleming, J. G.

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Formanek, F.

Fourkas, J. T.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Fox, A. M.

A. M. Fox, Optical Properties of Solids, in (Oxford Univ. Press, Oxford, 2002).

Freymann, G.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Gerard, J.

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

Guerin, L. J.

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Güntherodt, H.-J.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Harbers, R.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Ho, K. M.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

Ho, K.-M.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Hole, D. E.

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
[CrossRef]

Holstein, T.

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535–536 (1954).
[CrossRef]

Ibisate, M.

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

Ishikawa, A.

Joannopoulos, J. D.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, in (Kluwer, Boston, 2002).

Johnson, E. G.

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, in (Kluwer, Boston, 2002).

Juodkazis, K.

Juodkazis, S.

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15, 8454–8464 (2007).
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Juodkazyte, J.

Kawata, S.

Khayrullin, I. I.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Kim, C.-H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Kim, Y. S.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

Kim, Y.-S.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Kozlov, M. E.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Kuebler, S. M.

S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.

R. C. Rumpf, A. Tal, and S. M. Kuebler, “Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method,” J. Opt. Soc. Am. A 24, 3123–3134 (2007).
[CrossRef]

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
[CrossRef]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

S. M. Kuebler and M. Rumi, “Nonlinear optics - applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel; eds. (Elsevier, Oxford, 2004).

LaFratta, C. N.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Lee, J.-H.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Li, A.-Y.

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

Li, L.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Lin, S.-Y.

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Lourtioz, J.-M.

J.-M. Lourtioz and A. de Lustrac, “Metallic photonic crystals,” C. R. Phys. 3, 79–88 (2002).
[CrossRef]

Lu, T.-M.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

Mahrt, R. F.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Malynych, S.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

Marder, S. R.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Maytre, D.

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

Misawa, H.

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15, 8454–8464 (2007).
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Mizeikis, V.

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15, 8454–8464 (2007).
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Moreno, S.

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Murr, L. E.

R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
[CrossRef]

Murthy, N. S.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Ober, C. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Odian, G.

G. Odian, Principles of Polymerization, in 4th edn., (Wiley, New York, 2004).
[CrossRef]

Oh, C. H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Ovsianikov, A.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Perry, J. W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Renaud, P.

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Roberts, S.

S. Roberts, “Optical properties of copper,” Phys. Rev. 118, 1509–1518 (1960).
[CrossRef]

Rumi, M.

S. M. Kuebler and M. Rumi, “Nonlinear optics - applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel; eds. (Elsevier, Oxford, 2004).

Rumpf, R.

Rumpf, R. C.

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Salis, G.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Schulz, S.

R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Serbin, J.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

Sigalas, M.

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

Smith, C. G.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Takeyasu, N.

Tal, A.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
[CrossRef]

R. C. Rumpf, A. Tal, and S. M. Kuebler, “Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method,” J. Opt. Soc. Am. A 24, 3123–3134 (2007).
[CrossRef]

S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

A. Tal, “Three-dimensional micron-scale metal photonic crystals via multi-photon direct laser writing and electroless metal deposition.” Masters thesis, CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA (2007).
[PubMed]

Tanaka, T.

Tarozaite, R.

Tchelnokov, A.

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

Teh, W. H.

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

Torrance, D. B.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

Townsend, P. D.

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
[CrossRef]

Udod, I.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Villeneuve, P. R.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Wang, Y.

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

Weber, M. J.

M. J. Weber, “Handbook of Optical Materials,” in (CRC Press, New York, 2003).

Wegener, M.

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

Winn, J. N.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

Xia, Y.

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

Yablonovitch, E.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

Ye, D.-X.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Yu, T.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Zakhidov, A. A.

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Zhou, W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16, 1739–1744 (2006).
[CrossRef]

Adv. Mater. (3)

Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, “Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead,” Adv. Mater. 18, 471–476 (2006).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Appl. Phys. A (1)

M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, “Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals,” Appl. Phys. A 86, 421–425 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 4095–4097 (2004).
[CrossRef]

C. R. Phys. (1)

J.-M. Lourtioz and A. de Lustrac, “Metallic photonic crystals,” C. R. Phys. 3, 79–88 (2002).
[CrossRef]

Chem. Mater. (1)

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19, 3858–3860 (2007).
[CrossRef]

J. Am. Chem. Soc. (2)

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128, 1796–1797 (2006).
[CrossRef] [PubMed]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104-1–083104-4 (2006).
[CrossRef]

J. Mater. Sci. (1)

R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci. 36, 4079–4088 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Nature (1)

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Nature Mater. (1)

M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Nucl. Instrum. Meth. B (1)

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Optical reflectance of insulators containing implanted metal nanoparticles,” Nucl. Instrum. Meth. B 161–163, 913–916 (2000).
[CrossRef]

Opt. Express (4)

Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA). (1)

S. M. Kuebler, A. Tal, and Y.-S. Chen. “Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band.” Photonics West 2007: Micromachining Technology for Micro-Optics and Nano-Optics V and Microfabrication Process Technology XII (San Jose, CA).M.-A. Maher, H. D. Stewart, J.-C. Chiao, T. J. Suleski, E. G. Johnson, and G. P. Nordin; Eds., SPIE, 22–24 Jan. 2007,  Vol. 6462, pp. 646213-1–646213-6.

Phys. Rev. (2)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118, 1509–1518 (1960).
[CrossRef]

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535–536 (1954).
[CrossRef]

Phys. Rev. B (3)

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallodielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80, 2829–2832 (1998).
[CrossRef]

Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). (1)

L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.” Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16–19 June 1997,  Vol. 2, p. 1419.
[CrossRef]

Science (3)

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Other (7)

A. M. Fox, Optical Properties of Solids, in (Oxford Univ. Press, Oxford, 2002).

M. J. Weber, “Handbook of Optical Materials,” in (CRC Press, New York, 2003).

G. Odian, Principles of Polymerization, in 4th edn., (Wiley, New York, 2004).
[CrossRef]

S. M. Kuebler and M. Rumi, “Nonlinear optics - applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel; eds. (Elsevier, Oxford, 2004).

A. Tal, “Three-dimensional micron-scale metal photonic crystals via multi-photon direct laser writing and electroless metal deposition.” Masters thesis, CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA (2007).
[PubMed]

H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, in (Springer, Berlin, 2005).

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, in (Kluwer, Boston, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of SU-8 polymeric “stack-of-logs” PCs before (a-c) and after (d-f) Cu plating. The PCs were designed to have FCT symmetry and unit cell parameters b=a√2=3.54 µm and c=3.60 µm, where a and c/4 are the center-to-center horizontal and vertical log-spacing, respectively. The conventional FCT unit cell is outlined in (b) with a white square of edge length b. a, d) Perspective views of the PCs. b, e) Top views, looking along the <001> axis (normal to substrate). c, f) Side views, looking along the <110> axis (parallel to substrate). g) Energy dispersive x-ray (EDX) spectrum of a Cu-plated PC.

Fig. 2.
Fig. 2.

a) Metal layer thickness and reflectivity of an SU-8 thin film at λ 0=3.5 µm versus Cu bath immersion time. The uncertainty in the measured reflectivity and thickness are ±3% and ±15 nm, respectively. b) Spectral reflectivity of physical vapor deposited Cu (150 nm thickness) and an SU-8 thin film before and after 180 s of electroless Cu plating.

Fig. 3.
Fig. 3.

a)–d) Optical reflection microscopy images of SU-8 PCs (same type as in Figs. 1(a)(c)) at subsequent stages of the Cu deposition process. The scale bars correspond to 20 µm. e) and f) FTIR reflection spectra of PCs at various stages of Cu deposition. The spectra in (e) are offset vertically from one another by 10%. Those shown in (f) are superimposed (same reflectance scale), but plotted on an expanded wavelength scale.

Fig. 4.
Fig. 4.

a) Mid-IR reflectance of FCT PCs that are Cu coated for 420 s and have progressively larger unit cells of base-length b and height c. From smallest to largest unit cell, the PCs were designed for overall length, width, and height as 250×250×22.5 µm, 160×160×26.7 µm, and 175×175×33.4 µm. b) Simulated and experimentally measured reflectance for the Cu-MPC having b=5.90 and c=6.0 µm.

Metrics