Abstract

A resolution and viewing-angle enhanced integral imaging system using electrically movable pinhole array is proposed. A pinhole array on liquid crystal is adopted as dynamic pinhole array in integral imaging. The location of the pinhole array is controlled electrically. The pinhole array is expected to be moved fast enough to make an after-image effect, and the corresponding elemental images are displayed synchronously without reducing the 3D viewing aspect of the reconstructed image. With the proposed technique, the resolution and the viewing angle can be improved remarkably, and the upper resolution limit imposed by the Nyquist sampling theorem is overcome. The explanation of the proposed system is provided and the experimental results are also presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, "La photograhie integrale," C. R. Acad. Sci. 146, 446-451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for three-dimensional images," Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  3. N. Davies, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988).
    [CrossRef] [PubMed]
  4. M. C. Forman, N. Davies, and M. McCormick, "Continuous parallax in discrete pixilated integral three-dimensional displays," J. Opt. Soc. Am. A 20, 411-420 (2003).
    [CrossRef]
  5. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, "Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays," Appl. Opt. 43, 5806-5813 (2004).
    [CrossRef] [PubMed]
  6. H. Liao, M. Iwahara, N. Hata, and T. Dohi, "High-quality integral videography using a multiprojector," Opt. Express 12, 1067-1076 (2004).
    [CrossRef] [PubMed]
  7. S.-W. Min, M. Hahn, J. Kim, and B. Lee, "Three-dimensional electro-floating display system using an integral imaging method," Opt. Express 13, 4358-4369 (2005).
    [CrossRef] [PubMed]
  8. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W, Min, and B. Lee, "Viewing-angle-enhanced integral imaging system using a curved lens array," Opt. Express 12, 421-429 (2004).
    [CrossRef] [PubMed]
  9. S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, "Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array," J. Soc. Inf. Disp. 12, 461-467 (2004).
    [CrossRef]
  10. M. Okui, J. Arai, Y. Nojiri, and F. Okano, "Optical screen for direct projection of integral imaging," Appl. Opt. 45, 9132-9139 (2006).
    [CrossRef] [PubMed]
  11. D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
    [CrossRef]
  12. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, "Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging," Opt. Lett. 29, 2734-2736 (2004).
    [CrossRef] [PubMed]
  13. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, "Wide-viewing-angle 3D/2D convertible display system uing two display devices and a lens array," Opt. Express 13, 8424-8432 (2005).
    [CrossRef] [PubMed]
  14. H. Choi, Y. Kim, S.-W. Cho, and B. Lee, "A 3D/2D convertible display with pinhole array on a LC panel," Proc. of the 13th International Display Workshops, Otsu, Japan, 2, Dec. 2006, pp. 1361-1364.
  15. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, "Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging," Opt. Lett. 31, 2852-2854 (2006).
    [CrossRef] [PubMed]
  16. C. B. Burckhardt, "Optimum parameters and resolution limitation of integral photography," J. Opt. Soc. Am. 58, 71-76 (1967).
    [CrossRef]
  17. T. Okoshi, "Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays," Appl. Opt. 10, 2284-2291 (1971).
    [CrossRef] [PubMed]
  18. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photography," J. Opt. Soc. Am. A 15, 2059-2065 (1998).
    [CrossRef]
  19. K. Perlin, S. Paxia, and J. S. Kollin, An Autostereoscopic Display, Proc. of the 27th Ann. Conf. on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp.319-326.
  20. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  21. H. Liao, T. Dohi, and M. Iwahara, "Improved viewing resolution of integral videography by use of rotated prism sheets," Opt. Express 15, 4814-4822 (2007).
    [CrossRef] [PubMed]
  22. J. S. Jang and B. Javidi, "Three-dimensional integral imaging with electronically synthesized lenslet arrays," Opt. Lett. 27, 1767-1769 (2002).
    [CrossRef]
  23. J. S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, 1996-2002 (2003).
    [CrossRef] [PubMed]
  24. J.-H. Park, J. Kim, Y. Kim, and B. Lee, "Resolution-enhanced three-dimension / two-dimension convertible display based on integral imaging," Opt. Express 13, 1875-1884 (2005).
    [CrossRef] [PubMed]
  25. M. Levoy and P. Hanrahan, "Light field rendering," Proc. SIGGRAPH, New Orleans, Louisiana, Aug. 1996, pp. 31-42.
  26. B. Lee, S. Jung, and J.-H. Park, "Viewing-angle-enhanced integral imaging by lens switching," Opt. Lett. 27, 818-820 (2002).
    [CrossRef]

2007 (2)

D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
[CrossRef]

H. Liao, T. Dohi, and M. Iwahara, "Improved viewing resolution of integral videography by use of rotated prism sheets," Opt. Express 15, 4814-4822 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (3)

2004 (5)

2003 (2)

2002 (3)

1998 (1)

1997 (1)

1988 (1)

1971 (1)

1967 (1)

1908 (1)

G. Lippmann, "La photograhie integrale," C. R. Acad. Sci. 146, 446-451 (1908).

Arai, J.

Burckhardt, C. B.

Cho, S.-W.

Choi, H.

Davies, N.

Dohi, T.

Forman, M. C.

Hahn, M.

Hata, N.

Hong, J.

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, "Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array," J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, "Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging," Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Hoshino, H.

Isono, H.

Iwahara, M.

Jang, J. S.

Jang, J.-S.

Javidi, B.

Jung, S.

Kim, E.-S.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
[CrossRef]

Kim, H.-R.

Kim, J.

Kim, Y.

Lee, B.

Lee, S.-D.

Lee, S.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
[CrossRef]

Liao, H.

Lippmann, G.

G. Lippmann, "La photograhie integrale," C. R. Acad. Sci. 146, 446-451 (1908).

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

Min, S.-W.

Nojiri, Y.

Okano, F.

Okoshi, T.

Okui, M.

Park, J.-H.

Saavedra, G.

Shin, D.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
[CrossRef]

Yang, L.

Yuyama, I.

Appl. Opt. (6)

C. R. Acad. Sci. (1)

G. Lippmann, "La photograhie integrale," C. R. Acad. Sci. 146, 446-451 (1908).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, "Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array," J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

Opt. Commun. (1)

D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Other (3)

K. Perlin, S. Paxia, and J. S. Kollin, An Autostereoscopic Display, Proc. of the 27th Ann. Conf. on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp.319-326.

H. Choi, Y. Kim, S.-W. Cho, and B. Lee, "A 3D/2D convertible display with pinhole array on a LC panel," Proc. of the 13th International Display Workshops, Otsu, Japan, 2, Dec. 2006, pp. 1361-1364.

M. Levoy and P. Hanrahan, "Light field rendering," Proc. SIGGRAPH, New Orleans, Louisiana, Aug. 1996, pp. 31-42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram of 2D/3D convertible integral imaging: (a) 3D mode (b) 2D mode

Fig. 2.
Fig. 2.

Limitation of the resolution in integral imaging

Fig. 3.
Fig. 3.

Configuration of the proposed integral imaging system

Fig. 4.
Fig. 4.

Principle of the proposed method: (a) resolution of integrated image in case 1 and case 2 (b) resolution enhancement by time-multiplexing of cases 1 and 2

Fig. 5.
Fig. 5.

Schematic diagram of the moving pinhole array: (a) conventional fixed pinhole array (b) magnified units of the pinhole array according to the shift for each mode (c) proposed pinhole array by time-multiplexing of the modes in (b)

Fig. 6.
Fig. 6.

Conventional method: (a) viewing angle (b) a portion of stationary pinhole array

Fig. 7.
Fig. 7.

Proposed method: (a) enhanced viewing angle using mode 1 and mode 2 (b) proposed pinhole array movement and time-multiplexing

Fig. 8.
Fig. 8.

Viewing angle versus the resolution according to T considering (a) 1D case (b) 2D case

Fig. 9.
Fig. 9.

Experimental setup

Fig. 10.
Fig. 10.

Experimental results for resolution test: integrated 3D images (a) according to the four modes (b) using the proposed method

Fig. 11.
Fig. 11.

Integrated images observed from left and right: experimental results for resolution comparison between the conventional method and the proposed method

Fig. 12.
Fig. 12.

Experimental results for viewing angle test: integrated 3D images according to the modes and the integrated image using the proposed method

Fig. 13.
Fig. 13.

Integrated images observed from left and right: experimental results for viewing angle comparison between the conventional method and the proposed method

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

β nyq L 2 p ,
θ c = 2 arctan ( p 2 d ) ,
θ p = 2 arctan ( p d ) .
R p = T P c .
R p = T R c = T 1 p .
θ p = 2 arctan ( T p 2 d ) .
R p = k 1 p ,
θ p = 2 arctan ( T k p 2 d ) .
R p tan ( θ p 2 ) = T 2 d .
R p = k 1 p 2 ,
θ p = 2 arctan ( T k p 2 d ) ,
R p tan ( θ p 2 ) = T 1 2 d .

Metrics