J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

F. Ling, C. F. Wang, and J. M. Jin, “Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures,” J. Electromag. Waves Applicat. 12, 1021–1037 (1998).

[Crossref]

W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995).

[Crossref]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat. 30, 409–418 (1982).

[Crossref]

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley, New York, 1989).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat. 30, 409–418 (1982).

[Crossref]

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).

[Crossref]

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045,415 (2003).

[Crossref]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).

[Crossref]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2000), 2nd ed.

R. F. Harrington, Field Computation by Moment Methods (MacMillan, New York, 1968).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

V. D. Hulst, Light Scattering by Small Particles (John Wiley, New York, 1957).

F. Ling, C. F. Wang, and J. M. Jin, “Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures,” J. Electromag. Waves Applicat. 12, 1021–1037 (1998).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticleswith a non-regular shape,” Opt. Express 6, 213–219 (2000).

[Crossref]
[PubMed]

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045,415 (2003).

[Crossref]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).

[Crossref]
[PubMed]

F. Ling, C. F. Wang, and J. M. Jin, “Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures,” J. Electromag. Waves Applicat. 12, 1021–1037 (1998).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticleswith a non-regular shape,” Opt. Express 6, 213–219 (2000).

[Crossref]
[PubMed]

A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE-Oxford University Press, 1998).

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).

[Crossref]
[PubMed]

A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE-Oxford University Press, 1998).

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat. 30, 409–418 (1982).

[Crossref]

A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE-Oxford University Press, 1998).

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).

[Crossref]

W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticleswith a non-regular shape,” Opt. Express 6, 213–219 (2000).

[Crossref]
[PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticleswith a non-regular shape,” Opt. Express 6, 213–219 (2000).

[Crossref]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2000), 2nd ed.

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).

[Crossref]
[PubMed]

E. Moreno, D. E. Erni, C. Hafner, and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002).

[Crossref]

F. Ling, C. F. Wang, and J. M. Jin, “Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures,” J. Electromag. Waves Applicat. 12, 1021–1037 (1998).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat. 30, 409–418 (1982).

[Crossref]

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).

[Crossref]

W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995).

[Crossref]

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

[Crossref]

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat. 30, 409–418 (1982).

[Crossref]

W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995).

[Crossref]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).

[Crossref]

F. Ling, C. F. Wang, and J. M. Jin, “Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures,” J. Electromag. Waves Applicat. 12, 1021–1037 (1998).

[Crossref]

C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).

[Crossref]

E. Moreno, D. E. Erni, C. Hafner, and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002).

[Crossref]

J.-W. Liaw, “Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method,” J. Opt. Soc. Am. A 23, 108–116 (2006).

[Crossref]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).

[Crossref]
[PubMed]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).

[Crossref]
[PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticleswith a non-regular shape,” Opt. Express 6, 213–219 (2000).

[Crossref]
[PubMed]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045,415 (2003).

[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235,402 (2001).

[Crossref]

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley, New York, 1989).

A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE-Oxford University Press, 1998).

R. F. Harrington, Field Computation by Moment Methods (MacMillan, New York, 1968).

V. D. Hulst, Light Scattering by Small Particles (John Wiley, New York, 1957).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2000), 2nd ed.