Abstract

We propose a novel scheme to generate ultra-wideband (UWB) pulse by employing a Sagnac interferometer comprising a phase modulator. This structure performs a dual-input and dual-output intensity modulator (IM), ultimately resulting in the flexibility to select the shape and the polarity of the generated UWB pulse. The experiment results show a good agreement with the theoretical investigation in terms of both pulse profile and spectrum, which conforms to the definition of UWB signals by the U.S. Federal Communications Commission. Furthermore, the proposed scheme is independent of the voltage bias point.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
    [CrossRef]
  2. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
    [CrossRef]
  3. X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE Int.Symp. Circuits and Systems. 1, 26-29 (2002).
  4. J. Dong, X. Zhang, J. Xu, and D. Huang, "All-optical ultra-wideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier," Opt. Lett. 32, 2158-2160 (2007).
    [CrossRef] [PubMed]
  5. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
    [CrossRef]
  6. Q. Wang and J. Yao, "UWB doublet generation using nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
    [CrossRef]
  7. F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
    [CrossRef]
  8. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, "Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier," Opt. Lett. 32, 1223-1225 (2007).
    [CrossRef] [PubMed]
  9. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  10. C. Wang, F. Zeng, and J. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  11. M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
    [CrossRef]
  12. N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
    [CrossRef]
  13. E. H. W. Chan and R. A. Minasian, "A new technique for generating negative coefficients in photonic signal processors based on dual-input and dual-output intensity modulator sagnac interferometers," IEEE Photon. Technol. Lett. 18, 1252-1254 (2006).
    [CrossRef]
  14. J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
    [CrossRef]
  15. Q. Wang and J. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007).
    [CrossRef] [PubMed]

2007 (6)

2006 (4)

E. H. W. Chan and R. A. Minasian, "A new technique for generating negative coefficients in photonic signal processors based on dual-input and dual-output intensity modulator sagnac interferometers," IEEE Photon. Technol. Lett. 18, 1252-1254 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, "UWB doublet generation using nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

2003 (2)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

2002 (1)

X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE Int.Symp. Circuits and Systems. 1, 26-29 (2002).

1996 (1)

M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
[CrossRef]

1992 (1)

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Avramopoulos, H.

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

Blais, S.

Burns, W. K.

M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
[CrossRef]

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, "A new technique for generating negative coefficients in photonic signal processors based on dual-input and dual-output intensity modulator sagnac interferometers," IEEE Photon. Technol. Lett. 18, 1252-1254 (2006).
[CrossRef]

Chen, H.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Chen, X.

X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE Int.Symp. Circuits and Systems. 1, 26-29 (2002).

Dennis, M. L.

M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
[CrossRef]

Dong, J.

Duling, I. N.

M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
[CrossRef]

Fu, S.

Gabriel, M. C.

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

Hirt, W.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Huang, D.

Kiaei, S.

X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE Int.Symp. Circuits and Systems. 1, 26-29 (2002).

Lustberg, R. J.

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

Minasian, R. A.

E. H. W. Chan and R. A. Minasian, "A new technique for generating negative coefficients in photonic signal processors based on dual-input and dual-output intensity modulator sagnac interferometers," IEEE Photon. Technol. Lett. 18, 1252-1254 (2006).
[CrossRef]

Porcine, D.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Qiu, C.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Shum, P.

Wang, C.

C. Wang, F. Zeng, and J. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Wang, Q.

Whitaker, N. A.

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

Xie, S.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Xu, J.

Yao, J.

Q. Wang and J. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007).
[CrossRef] [PubMed]

J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, "UWB doublet generation using nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

Zeng, F.

C. Wang, F. Zeng, and J. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Zhang, J.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Zhang, X.

Electron. Lett. (3)

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Q. Wang and J. Yao, "UWB doublet generation using nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

M. L. Dennis, I. N. DulingIII, and W. K. Burns, "Inherently bias drift free amplitude modulator," Electron. Lett. 32, 547-548 (1996).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

N. A. WhitakerJr., R. J. Lustberg, M. C. Gabriel, and H. Avramopoulos, "Low-drift modulator without feedback," IEEE Photon. Technol. Lett. 4, 855-857 (1992).
[CrossRef]

E. H. W. Chan and R. A. Minasian, "A new technique for generating negative coefficients in photonic signal processors based on dual-input and dual-output intensity modulator sagnac interferometers," IEEE Photon. Technol. Lett. 18, 1252-1254 (2006).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Symp. Circuits and Systems. (1)

X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE Int.Symp. Circuits and Systems. 1, 26-29 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structure of the intensity modulator based on Sagnac interferometer and the schematic transfer function of transmission (solid line) and reflection (dashed line). PM: phase modulator; VFDL: variable fiber delay line; RF: radio frequency; CW: clockwise; CCW: counterclockwise; Φ: nonreciprocal quadrature bias unit.

Fig. 2.
Fig. 2.

Operation principle of the proposed scheme.

Fig. 3.
Fig. 3.

Simulation results for the waveforms and spectra of monocycle pulse (upper) and doublet pulse (lower) assuming Δτ=80 ps.

Fig. 4.
Fig. 4.

Experiment setup. LD: laser diode; PC: polarization controller; PPG: pulse pattern generator; PD: photodiode; EA: electrical amplifier; ESA: electrical spectrum analyzer.

Fig. 5.
Fig. 5.

Experiment results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ φ ( t ) = π V ( t ) V π ( 1 sin ( ω τ ) ω τ )
H ( t ) = 1 2 { 1 ± cos [ Δ φ ( t ) + Φ ] }
s ( t ) = ± A 1 exp [ ( 4 ln 2 ) · ( t + Δ τ ) 2 T FWHM 2 ] A 2 exp [ ( 4 ln 2 ) · t 2 T FWHM 2 ] ± A 3 exp [ ( 4 ln 2 ) · ( t Δ τ ) 2 T FWHM 2 ]

Metrics