Abstract

We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. M. Kollkman, W. Steenbergen, and T. G. van Leeuwen, "Reflection mode photoacoustic measurement of seed of sound," Opt. Express 15, 3291-3300 (2007).
    [CrossRef]
  2. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
    [CrossRef] [PubMed]
  3. Z. Chen, Z. Tang, and W. Wan, "Photoacoustic tomography imaging based on a 4f acoustic lens imaging systems," Opt. Express 15, 4966-4976 (2007).
    [CrossRef] [PubMed]
  4. Z. Yuan, Q. Zhang, and H. Jiang, "Simultaneously reconstruction of acoustic and optical properties of heterogeneous medium by quantitative photoacoustic tomography," Opt. Express 14, 6749-6753 (2006).
    [CrossRef] [PubMed]
  5. R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
    [CrossRef] [PubMed]
  6. G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
    [CrossRef] [PubMed]
  7. S. J. Norton and T. Vo-Dinh, "Optoacoustic diffraction tomography: analysis of algorihms," J. Opt. Soc. Am. A 20, 1859-1866 (2003).
    [CrossRef]
  8. A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
    [CrossRef]
  9. C. G. A. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessls in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  10. H. Jiang, Z. Yuan, and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite element-based photoacoustic tomography," J. Opt. Soc. Am. A 23, 878-888 (2006).
    [CrossRef]
  11. J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium," Phys. Rev. E 71, 031912 (2005).
    [CrossRef]
  12. Z. Yuan and H. Jiang, "Quantitative photoacoustic tomography: recovery of optical absorption coefficient map of heterogeneous medium," Appl. Phys. Lett. 88, 231101 (2006).
    [CrossRef]
  13. B. Cox, S. Arridge, K. Kostli and P. Beard, "2D quantitative photoacoustic image reconstruction of absorption distributions in scattering medium using a simple iterative method," Appl. Opt. 45, 1866-1875 (2006).
    [CrossRef] [PubMed]
  14. L. Yin, Q. Wang, Q. Zhang, H. Jiang, "Tomographic imaging of absolute optical absorption coefficient in turbid medium using combing photoacoustic and diffusing light measurements," Opt. Lett. 32, 2556-2558 (2007).
    [CrossRef] [PubMed]
  15. N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  16. P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
    [CrossRef] [PubMed]
  17. Z. Yuan and H. Jiang, "Three-dimensional finite element-based photoacoustic tomography: Reconstruction algorithm and simulations," Med. Phys. 34, 538-546 (2007).
    [CrossRef] [PubMed]

2007 (5)

2006 (4)

2005 (2)

2003 (1)

2002 (1)

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
[CrossRef]

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

1998 (1)

Arridge, S.

Beard, P.

Chen, Z.

Cox, B.

de Mul, F. F.

Dehghani, H.

P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Dekker, A.

Gu, X.

Hoelen, C. G. A.

Iftimia, N.

Jacques, S.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Jiang, H.

Karabutov, A. A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
[CrossRef]

Kolkman, R. G. M.

Kollkman, R. G. M.

Kostli, K.

Kruger, G.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Norton, S. J.

Ntziachristos, V.

J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium," Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Oraevsky, A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
[CrossRef]

Paltauf, G.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Paulsen, K. D.

P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Pogue, B.

P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Pongers, R.

Prahl, S.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Reinecke, D.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Ripoll, J.

J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium," Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Savateeva, E.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
[CrossRef]

Siphanto, R. I.

Steenbergen, W.

Tang, Z.

Thumma, K. K.

van Leeuwen, T. G.

Viator, J.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Vo-Dinh, T.

Wan, W.

Wang, Q.

Yalavarthy, P.

P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Yin, L.

Yuan, Z.

Z. Yuan and H. Jiang, "Three-dimensional finite element-based photoacoustic tomography: Reconstruction algorithm and simulations," Med. Phys. 34, 538-546 (2007).
[CrossRef] [PubMed]

H. Jiang, Z. Yuan, and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite element-based photoacoustic tomography," J. Opt. Soc. Am. A 23, 878-888 (2006).
[CrossRef]

Z. Yuan and H. Jiang, "Quantitative photoacoustic tomography: recovery of optical absorption coefficient map of heterogeneous medium," Appl. Phys. Lett. 88, 231101 (2006).
[CrossRef]

Z. Yuan, Q. Zhang, and H. Jiang, "Simultaneously reconstruction of acoustic and optical properties of heterogeneous medium by quantitative photoacoustic tomography," Opt. Express 14, 6749-6753 (2006).
[CrossRef] [PubMed]

Zhang, Q.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Yuan and H. Jiang, "Quantitative photoacoustic tomography: recovery of optical absorption coefficient map of heterogeneous medium," Appl. Phys. Lett. 88, 231101 (2006).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Med. Phys. (3)

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Z. Yuan and H. Jiang, "Three-dimensional finite element-based photoacoustic tomography: Reconstruction algorithm and simulations," Med. Phys. 34, 538-546 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. E (1)

J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium," Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Proc. SPIE (1)

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The optical fluence (a), recovered absorbed energy density (b) and absorption coefficient (c) images using simulated data. The axes (left and bottom) illustrate the spatial scale, in mm, whereas the color scale (right) records the absorbed optical energy density (optical fluence) in relative units, or absorption coefficient in mm-1.

Fig. 2.
Fig. 2.

Reconstructed absorption coefficient images (a, b), absorbed light energy density images (c, d). (a), (c) are for experiment 1, and (b), (d) for experiment 2. The axes (left and bottom) illustrate the spatial scale, in mm, whereas the color scale (right) records the absorbed optical energy density in relative units, or absorption coefficient in mm-1.

Fig. 3.
Fig. 3.

Reconstructed absorption coefficient images for experiment 3 (a) and experiment 4 (b). The axes (left and bottom) illustrate the spatial scale, in mm, whereas the color scale (right) records the absorption coefficient in mm-1.

Tables (1)

Tables Icon

Table 1. Average value of the recovered absorption coefficient (mm-1) of target and background and target size (mm) for experiments 1 and 2

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 p ( r , ω ) + k 0 2 p ( r , ω ) = i k 0 c 0 β Φ ( r ) C p
( T + λ I ) Δ χ = T ( p o p c )
· D ( r ) ( E ( r ) Φ ( r ) ) Φ ( r ) = S ( r )
D ( r ) ( E ( r ) Φ ( r ) ) · n ̂ = α E ( r ) Φ ( r )
min χ { Φ c Φ o 2 + β L [ E E o ] 2
( Δ E ) = ( J T J + λ I + β L T L ) 1 [ J T ( Φ o Φ c ) β L T L ( E E 0 ]
( Δ E ) = ( J T J + λ I + L T L ) 1 [ J T ( Φ o Φ c ) ]
L ij = { 1 if i = j 1 NN if i , j one region 0 if i , j different region

Metrics