Abstract

An ellipsometric data acquisition method is introduced to measure the optical properties of sample. It is based on a microellipsometer hardware layout integrated a high numerical aperture objective lens, which is aligned in the normal direction of sample surface. This technique enables to achieve ellipsometric data at multiple incident angle with a sub-µm probe beam size, moreover real-time measurement is possible due to no moving parts. The experimental results of different SiO2 thin film are demonstrated, also calibration technique is described.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microellipsometer with radial symmetry

Qiwen Zhan and James R. Leger
Appl. Opt. 41(22) 4630-4637 (2002)

High-spatial-resolution nulling microellipsometer using rotational polarization symmetry

Alain Tschimwang and Qiwen Zhan
Appl. Opt. 49(9) 1574-1580 (2010)

Characterization of bidimensional gratings by spectroscopic ellipsometry and angle-resolved Mueller polarimetry

Bernard Kaplan, Tatiana Novikova, Antonello De Martino, and Bernard Drévillon
Appl. Opt. 43(6) 1233-1240 (2004)

References

  • View by:
  • |
  • |
  • |

  1. The International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net (2006).
  2. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, (North-Holland, Amsterdam, 1996).
  3. A. Liu, P. C. Wayner, and J. L. Plawsky, “Image scanning ellipsometry for measuring nonuniform film thickness profiles,” Appl. Opt. 33, 1223–1229 (1994).
    [Crossref] [PubMed]
  4. H. K. Pak and B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
    [Crossref]
  5. G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
    [Crossref]
  6. R. F. Cohn, J. W. Wagner, and J. Kruger, “Dynamic imaging microellipsometry: theory, system design, and feasibility demonstration,” Appl. Opt. 27, 4664–4671 (1988).
    [Crossref] [PubMed]
  7. S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers,” Rev. Sci. Instrum. 62, 936–939 (1991).
    [Crossref]
  8. A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
    [Crossref]
  9. G. D. Feke, D. P. Snow, R. D. Grober, P. J. de Groot, and L. Deck, “Interferometric back focal plane microellipsometry,” Appl. Opt. 37, 1796–1802 (1998).
    [Crossref]
  10. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41, 4630–4637 (2002).
    [Crossref] [PubMed]
  11. Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” Appl. Opt. 41, 4443–4450 (2002).
    [Crossref] [PubMed]
  12. F. Linke and R. Merkel, “Quantitative ellipsometric microscopy at the silicon-air interface,” Rev. Sci. Instrum. 76, 063701 (2005).
    [Crossref]
  13. A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
    [Crossref]
  14. J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
    [Crossref]
  15. W. Yeh, J. Carriere, and M. Mansuripur, “Polarization microscopy of magnetic domains for magneto-optical disks,” Appl. Opt. 38, 3749–3758 (1999).
    [Crossref]

2005 (1)

F. Linke and R. Merkel, “Quantitative ellipsometric microscopy at the silicon-air interface,” Rev. Sci. Instrum. 76, 063701 (2005).
[Crossref]

2002 (2)

1999 (2)

J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
[Crossref]

W. Yeh, J. Carriere, and M. Mansuripur, “Polarization microscopy of magnetic domains for magneto-optical disks,” Appl. Opt. 38, 3749–3758 (1999).
[Crossref]

1998 (2)

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

G. D. Feke, D. P. Snow, R. D. Grober, P. J. de Groot, and L. Deck, “Interferometric back focal plane microellipsometry,” Appl. Opt. 37, 1796–1802 (1998).
[Crossref]

1996 (1)

G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[Crossref]

1995 (1)

H. K. Pak and B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[Crossref]

1994 (1)

1992 (1)

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

1991 (1)

S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers,” Rev. Sci. Instrum. 62, 936–939 (1991).
[Crossref]

1988 (1)

Albersdörfer, A.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Arwin, H.

G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[Crossref]

Aspnes, D. E.

J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
[Crossref]

Azzam, M. A.

M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, (North-Holland, Amsterdam, 1996).

Bashara, N. M.

M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, (North-Holland, Amsterdam, 1996).

Carriere, J.

Cohn, R. F.

de Groot, P. J.

Deck, L.

Elender, G.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Fanton, J. T.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

Feke, G. D.

Grober, R. D.

Hénon, S.

S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers,” Rev. Sci. Instrum. 62, 936–939 (1991).
[Crossref]

Jansson, R.

G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[Crossref]

Jin, G.

G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[Crossref]

Kelso, S. M.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

Kruger, J.

Law, B. M.

H. K. Pak and B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[Crossref]

Leger, J. R.

Leng, J. M.

J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
[Crossref]

Linke, F.

F. Linke and R. Merkel, “Quantitative ellipsometric microscopy at the silicon-air interface,” Rev. Sci. Instrum. 76, 063701 (2005).
[Crossref]

Liu, A.

Mansuripur, M.

Mathe, G.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Merkel, R.

F. Linke and R. Merkel, “Quantitative ellipsometric microscopy at the silicon-air interface,” Rev. Sci. Instrum. 76, 063701 (2005).
[Crossref]

Meunier, J.

S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers,” Rev. Sci. Instrum. 62, 936–939 (1991).
[Crossref]

Neumaier, K. R.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Opsal, J.

J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
[Crossref]

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

Paduschek, P.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Pak, H. K.

H. K. Pak and B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[Crossref]

Plawsky, J. L.

Rosencwaig, A.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

Sackmann, E.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

Snow, D. P.

Wagner, J. W.

Wayner, P. C.

Willenborg, D. L.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

Yeh, W.

Zhan, Q.

Appl. Opt. (6)

Appl. Phys. Lett. (2)

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, and E. Sackmann, “High resolution imaging microellipsometry of soft surfaces at 3 µm lateral and 5 Ånormal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[Crossref]

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, “Beam profile reflectometry: A new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301–1303 (1992).
[Crossref]

J. Vac. Sci. Technol. A. (1)

J. M. Leng, J. Opsal, and D. E. Aspnes, “Combined beam profile reflectometry, beam profile ellipsometry and ultraviolet-visible spectrophotometry for the characterization of ultrathin oxide-nitride-oxide films on silicon,” J. Vac. Sci. Technol. A. 17, 380–384 (1999).
[Crossref]

Rev. Sci. Instrum. (4)

F. Linke and R. Merkel, “Quantitative ellipsometric microscopy at the silicon-air interface,” Rev. Sci. Instrum. 76, 063701 (2005).
[Crossref]

H. K. Pak and B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[Crossref]

G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[Crossref]

S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers,” Rev. Sci. Instrum. 62, 936–939 (1991).
[Crossref]

Other (2)

The International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net (2006).

M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, (North-Holland, Amsterdam, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Basic principle of microellipsometer: (a) Multiple rays are refracted at different angles of incidence by an objective lens (b) Polarization states of input and output beam are decribed in the upper and lower semicircle, respectively
Fig. 2.
Fig. 2. Schematic of optical components and coordinates for microellipsometer
Fig. 3.
Fig. 3. Schematic of optical layout in microellipsometer
Fig. 4.
Fig. 4. Two-dimemsional intensity distribution on the exit pupil plane of an objective lens: (a) theoretical results (b) experimental results with SiO2 thin film of 32.9 nm thickness
Fig. 5.
Fig. 5. Normalized Fourier coefficients {α24}: solid- and dotted-line mean theoretically calculated normalized Fourier coefficients {αTheo 2Theo 4}, circle and rectangle points represent experimental data {αExp 2Exp 4} for 32.9 and 53.6 nm thickness SiO2 sample.
Fig. 6.
Fig. 6. Calibrated {αCal 2(4), –+–, –∙–, –×–} and experimental {αExp 2(4), □, ◦, ∆} normalized Fourier coefficients for 53.6, 32.9, and 2.1 nm thickness SiO2 sample, respectively

Tables (1)

Tables Icon

Table 1. Measurement results for various SiO2 thin film sample with microellipsometer

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E in = ( E ix E iy ) .
T P = R ( P ) ( 1 0 0 0 ) R ( P ) .
R ( P ) = ( cos P sin P sin P cos P ) .
T M = ( 0 1 1 0 )
T A = R ( A ) ( 1 0 0 0 ) R ( A ) .
E out ( θ , φ ) = ( E ox E oy ) = T A R [ ( φ + π 2 ) ] T M T S ( θ ) R ( φ ) T P E in .
T S ( θ ) = ( r p ( θ ) 0 0 r s ( θ ) ) ,
I ( θ , φ ) I 0 { 1 + α 2 ( θ ) cos 2 φ + α 4 ( θ ) cos 4 φ } ,
I 0 = 1 8 E ix 2 r s 2 ( 3 tan 2 Ψ 2 tan Ψ cos Δ + 3 ) ,
α 2 ( θ ) = 4 tan 2 Ψ 4 3 tan 2 Ψ 2 tan Ψ cos Δ + 3
α 4 ( θ ) = tan 2 Ψ + 2 tan Ψ cos Δ + 1 3 tan 2 Ψ 2 tan Ψ cos Δ + 3 .
tan Ψ = r p r s , exp i ( Δ ) = exp i ( δ r p δ r s ) .
sin θ i = ( ρ ρ max ) sin ( θ max ) ,
E out Cal ( θ , φ ) = T A R [ ( φ + π 2 ) ] T M T C ( θ ) T S ( θ ) T C ( θ ) R ( φ ) T P E in ,
T C ( θ ) = ( ε e i δ 0 0 1 ) .
α 2 Cal ( θ , ε , δ ) = 4 ε 4 tan 2 Ψ 4 3 ε 4 tan 2 Ψ 2 ε 2 tan Ψ cos ( Δ + 2 δ ) + 3
α 4 Cal ( θ , ε , δ ) = ε 4 tan 2 Ψ + 2 ε 2 tan Ψ cos ( Δ + 2 δ ) + 1 3 ε 4 tan 2 Ψ 2 ε 2 tan Ψ cos ( Δ + 2 δ ) + 3 .
LSE = i = 1 n { [ α 2 , i Cal ( θ , ε , δ ) α 2 , i Exp ( θ ) ] 2 + [ α 4 , i Cal ( θ , ε , δ ) α 4 , i Exp ( θ ) ] 2 } ,

Metrics