Abstract

We have conducted a feasibility study of a frequency splitter operating at THz frequencies, based on a bidirectional subwavelength slit simulated using two-dimensional finite difference time domain (FDTD) techniques. The near-field wave emanating from the narrow slit serves as a subwavelength-scaled excitation source. By placing two optimized grating structures on the opposite sides of the slit, the THz waves at different frequencies are guided in the two desired directions. Confinement of the optical field is illustrated for different surface structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
    [Crossref]
  2. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189 (2006).
    [Crossref] [PubMed]
  3. M. Skorobogatiy and A. V. Kabashin. “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
    [Crossref]
  4. D. Qu, D. Grischkowsky, and W. Zhang. “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
    [Crossref] [PubMed]
  5. J. F. O’Hara, R. D. Averitt, and A. J. Taylor. “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397 (2004).
    [Crossref] [PubMed]
  6. H. Cao and A. Nahata. “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004 (2004).
    [Crossref] [PubMed]
  7. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
    [Crossref]
  8. K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
    [Crossref]
  9. K. Wang and D. M. Mittleman. “Metal wires for terahertz wave guiding,” Nature (London) 432, 376 (2004).
    [Crossref]
  10. T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [Crossref]
  11. Hua Cao and Ajay Nahata. “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028 (2005). http://www.opticsexpress.org/abstract.cfm?&id=85376
    [Crossref] [PubMed]
  12. Amit Agrawal and Ajay Nahata, “Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture,” Opt. Express,  15, 9022 (2007).
    [Crossref] [PubMed]
  13. Mark Lee and Michael C. Wanke. “Searching for a Solid-State Terahertz Technology,” Science 316, 64 (2007).
    [Crossref] [PubMed]
  14. Kanglin Wang and Daniel M. Mittleman. “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range,” Phys. Rev. Lett. 96, 157401 (2006).
    [Crossref] [PubMed]
  15. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
    [Crossref] [PubMed]
  16. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
    [Crossref] [PubMed]
  17. S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref] [PubMed]
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).
  19. S. Maier, “Clear for launch,” Nature Physics 3, 301 (2007).
    [Crossref]
  20. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
    [Crossref]
  21. S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
    [Crossref]
  22. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer-Verlag, Berlin Heidelberg1998).
  23. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
    [Crossref]
  24. Mark I. Stockman. “Nanofocusing of Optical Energy in Tapered PlasmonicWaveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  25. P. Ginzburg, D. Arbel, and M. Orenstein. “Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing,” Opt. Lett. 31, 3288 (2006);
    [Crossref] [PubMed]
  26. C. Genet and T. W. Ebbesen. “Light in tiny holes,” Nature (London) 445, 39 (2007).
    [Crossref]
  27. H. J. Lezec and T. Thio. “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
    [Crossref] [PubMed]
  28. J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
    [Crossref] [PubMed]

2007 (6)

Amit Agrawal and Ajay Nahata, “Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture,” Opt. Express,  15, 9022 (2007).
[Crossref] [PubMed]

Mark Lee and Michael C. Wanke. “Searching for a Solid-State Terahertz Technology,” Science 316, 64 (2007).
[Crossref] [PubMed]

S. Maier, “Clear for launch,” Nature Physics 3, 301 (2007).
[Crossref]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

C. Genet and T. W. Ebbesen. “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]

2006 (6)

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

P. Ginzburg, D. Arbel, and M. Orenstein. “Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing,” Opt. Lett. 31, 3288 (2006);
[Crossref] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
[Crossref] [PubMed]

Kanglin Wang and Daniel M. Mittleman. “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189 (2006).
[Crossref] [PubMed]

M. Skorobogatiy and A. V. Kabashin. “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[Crossref]

2005 (4)

T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

Hua Cao and Ajay Nahata. “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028 (2005). http://www.opticsexpress.org/abstract.cfm?&id=85376
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
[Crossref]

2004 (9)

Mark I. Stockman. “Nanofocusing of Optical Energy in Tapered PlasmonicWaveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

H. J. Lezec and T. Thio. “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

D. Qu, D. Grischkowsky, and W. Zhang. “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
[Crossref] [PubMed]

J. F. O’Hara, R. D. Averitt, and A. J. Taylor. “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397 (2004).
[Crossref] [PubMed]

H. Cao and A. Nahata. “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004 (2004).
[Crossref] [PubMed]

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
[Crossref]

K. Wang and D. M. Mittleman. “Metal wires for terahertz wave guiding,” Nature (London) 432, 376 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
[Crossref]

Agrawal, Amit

Andrews, Steve R.

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Arbel, D.

Atwater, H. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
[Crossref] [PubMed]

Averitt, R. D.

Barkan, A.

K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
[Crossref]

Bartoli, F. J.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Cao, H.

Cao, Hua

Chen, L.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
[Crossref]

Devaux,

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Ding, Y. J.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Dionne, J. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen. “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Fu, Z.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Gan, Q.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Garcia-Vidal, E.

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen. “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]

Ginzburg, P.

Gómez Rivas, J.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

D. Qu, D. Grischkowsky, and W. Zhang. “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
[Crossref] [PubMed]

Guo, B.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Haring Bolivar, P.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Janke, C.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

Kabashin, A. V.

M. Skorobogatiy and A. V. Kabashin. “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[Crossref]

Kurz, H.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Lee, Mark

Mark Lee and Michael C. Wanke. “Searching for a Solid-State Terahertz Technology,” Science 316, 64 (2007).
[Crossref] [PubMed]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
[Crossref] [PubMed]

H. J. Lezec and T. Thio. “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref] [PubMed]

Li, D.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer-Verlag, Berlin Heidelberg1998).

López-Tejeira, S. G.

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Maier, S.

S. Maier, “Clear for launch,” Nature Physics 3, 301 (2007).
[Crossref]

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Martin-Moreno, F. J.

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

Martín-Moreno, L.

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Mittleman, D. M.

K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
[Crossref]

K. Wang and D. M. Mittleman. “Metal wires for terahertz wave guiding,” Nature (London) 432, 376 (2004).
[Crossref]

Mittleman, Daniel M.

Kanglin Wang and Daniel M. Mittleman. “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

Nahata, A.

Nahata, Ajay

O’Hara, J. F.

Orenstein, M.

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189 (2006).
[Crossref] [PubMed]

Pellemans, H. P. M.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

Qu, D.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).

Rodrigo, L.

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Saxler, J.

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Skorobogatiy, M.

M. Skorobogatiy and A. V. Kabashin. “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[Crossref]

Song, G.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

Stockman, Mark I.

Mark I. Stockman. “Nanofocusing of Optical Energy in Tapered PlasmonicWaveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Taylor, A. J.

Thio, T.

Wang, K.

K. Wang and D. M. Mittleman. “Metal wires for terahertz wave guiding,” Nature (London) 432, 376 (2004).
[Crossref]

K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
[Crossref]

Wang, Kanglin

Kanglin Wang and Daniel M. Mittleman. “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

Wanke, Michael C.

Mark Lee and Michael C. Wanke. “Searching for a Solid-State Terahertz Technology,” Science 316, 64 (2007).
[Crossref] [PubMed]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

Zhang, K.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer-Verlag, Berlin Heidelberg1998).

Zhang, W.

Appl. Phys. Lett. (4)

M. Skorobogatiy and A. V. Kabashin. “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[Crossref]

K. Wang, A. Barkan, and D. M. Mittleman. “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305 (2004).
[Crossref]

T.-I. Jeon, J. Zhang, and D. Grischkowsky. “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic Surface-Wave Splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S94 (2005).
[Crossref]

Nano Lett. (1)

J. A. Dionne, H. J. Lezec, and H. A. Atwater. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides,” Nano Lett. 6, 1928 (2006).
[Crossref] [PubMed]

Nature (London) (3)

C. Genet and T. W. Ebbesen. “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]

K. Wang and D. M. Mittleman. “Metal wires for terahertz wave guiding,” Nature (London) 432, 376 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature (London) 424, 824 (2003).
[Crossref]

Nature Phys. (1)

S. G. López-Tejeira, L. Rodrigo, F. J. Martin-Moreno, E. Garcia-Vidal, and Devaux “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324 (2007).
[Crossref]

Nature Physics (1)

S. Maier, “Clear for launch,” Nature Physics 3, 301 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz. “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Phys. Rev. Lett. (3)

Kanglin Wang and Daniel M. Mittleman. “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

S. Maier, Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Mark I. Stockman. “Nanofocusing of Optical Energy in Tapered PlasmonicWaveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Science (4)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Mark Lee and Michael C. Wanke. “Searching for a Solid-State Terahertz Technology,” Science 316, 64 (2007).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189 (2006).
[Crossref] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer-Verlag, Berlin Heidelberg1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Dispersion curves calculated for d=20µm and p=50µm with different groove depths. Inset: Schematic illustration of the envisioned structure.

Fig. 2.
Fig. 2.

Results Obtained by using two dimensional FDTD simulations: (a) corresponds to the two-dimensional field distribution and one-dimensional optical intensity (|E|2) distribution 2µm above the perfect metal surface, respectively. In this simulation, the frequency of the incident light is 1THz. The simulation result is similar when the incident light wavelength is 600µm and frequency is 0.5THz. (b) and (c) represents the two-dimensional field distribution and one-dimensional optical intensity (|E|2) distribution 2µm above the structured metal surface, respectively. The frequencies of the incident light are 0.5THz in (b) and 1THz in (c), respectively. In these simulations, the thickness of the metal is 400µm, the width (d) and period (p) of the gratings are 20 µm and 50 µm, respectively. The depths (h) of the left-hand side and right-hand side gratings are 50 and 110µm, the top and the bottom width of the slit are 20µm and 300µm. The simulation time T=6500µm/c, here c is the light velocity in vacuum.

Fig. 3.
Fig. 3.

Field concentration above the two surface structures with different depths (50µm in the left-hand side and 110µm in the right-hand side). Distribution of the E field, evaluated at f=0.5 THz and 1THz, along the vertical direction to the surface structures were calculated from the FDTD results shown in Fig. 2(b) and (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E z 1 = n = τ n 2 A n e τ n x e j β n z
H y 1 = n = j ω ε 0 τ n A n e τ n x e j β n z
E z 2 = B sin k ( x + h ) sin kh e j β 0 mp , ( mp d 2 < z < mp + d 2 )
H y 2 = j ε 0 μ 0 B cos k ( x + h ) sin kh e j β 0 mp , ( mp d 2 < z < mp + d 2 )
d p n = 1 τ n h ( sin c β n d 2 ) 2 = cot kh kh

Metrics