Abstract

Shaping of the phase, amplitude, and polarization state of an ultrashort pulse is demonstrated using a novel arrangement of a single, linear, high-resolution liquid crystal array. Orthogonal polarization components, separated by a Wollaston prism, are manipulated independently and re-combined in a near-common path, common-optic geometry.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
    [CrossRef]
  2. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude modulation,” Opt. Lett. 10, 609–611 (1985).
    [CrossRef] [PubMed]
  3. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron QE-5, 454 (1969)
    [CrossRef]
  4. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
    [CrossRef] [PubMed]
  5. W. Dietel, J. J. Fontaine, and J. C. Diels, “Intracavity pulse compression with galss: a new method of generating pulses shorter than 60 fsec,” Opt. Lett. 84–6 (1983)
    [CrossRef] [PubMed]
  6. F. J. Duarte and J. A. Piper, “Dispersion theory of multiple-prism beam expanders for pulsed dye lasers,” Opt Commun 43, 303–307 (1982)
    [CrossRef]
  7. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  8. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullet, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  9. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical wave-forms,” Opt. Lett. 201047–1049 (1995).
    [CrossRef] [PubMed]
  10. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
    [CrossRef]
  11. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt Commun 140, 245–249 (1997).
    [CrossRef]
  12. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser-pulse shaping by use of microsecond radiofrequency pulses,” Opt. Lett. 19, 737–739 (1994).
    [CrossRef] [PubMed]
  13. A.M. Weiner and A.M. Kan’an“Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317 (1998).
    [CrossRef]
  14. T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
    [CrossRef]
  15. A. Efimov and D. H. Reitze, “Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier,” Opt. Lett. 23, 1612–1614 (1998).
    [CrossRef]
  16. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
    [CrossRef]
  17. D. Yelin, D. Meshulach, and Y. Silberberg “Adaptive femtosecond pulse compression,” Opt. Lett. 221793–1795 (1997).
    [CrossRef]
  18. W. S. Warren, H. Rabitz, and M. Dahleh “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  19. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
    [CrossRef]
  20. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [CrossRef] [PubMed]
  21. T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
    [CrossRef]
  22. T. Brixner and G. Gerber “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [CrossRef]
  23. L. Polachek, D. Oron, and Y. Silberberg “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
    [CrossRef] [PubMed]
  24. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger “Phase, amplitude, and polarization with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
    [CrossRef] [PubMed]
  25. J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
    [CrossRef]
  26. P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).
  27. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  28. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [CrossRef]
  29. D. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Select. Topics Quantum Electron. 4, 278–284 (1998).
    [CrossRef]
  30. A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.
  31. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
    [CrossRef] [PubMed]

2007 (1)

J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
[CrossRef]

2006 (2)

2001 (2)

T. Brixner and G. Gerber “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

2000 (3)

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (2)

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
[CrossRef]

1998 (4)

A. Efimov and D. H. Reitze, “Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier,” Opt. Lett. 23, 1612–1614 (1998).
[CrossRef]

A.M. Weiner and A.M. Kan’an“Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

D. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Select. Topics Quantum Electron. 4, 278–284 (1998).
[CrossRef]

1997 (3)

1995 (1)

1994 (1)

1993 (2)

1990 (1)

1985 (1)

1984 (2)

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
[CrossRef] [PubMed]

O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
[CrossRef]

1983 (1)

1982 (2)

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple-prism beam expanders for pulsed dye lasers,” Opt Commun 43, 303–307 (1982)
[CrossRef]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron QE-5, 454 (1969)
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Backus, S.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
[CrossRef]

Bartels, R.

J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

Bartels, R. A.

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Brixner, T.

T. Brixner and G. Gerber “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Bucksbaum, P. H.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259, 1581 (1993).
[CrossRef] [PubMed]

Diels, J. C.

Dietel, W.

Duarte, F. J.

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple-prism beam expanders for pulsed dye lasers,” Opt Commun 43, 303–307 (1982)
[CrossRef]

Efimov, A.

Fittinghoff, D. N.

Fontaine, J. J.

Fork, R. L.

O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
[CrossRef] [PubMed]

Gerber, G.

T. Brixner and G. Gerber “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Geremia, J. M.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

Gordon, J. P.

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
[CrossRef] [PubMed]

O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
[CrossRef]

Goswami, D.

Heritage, J. P.

Hillegas, C. W.

Ina, H.

Kan’an, A.M.

A.M. Weiner and A.M. Kan’an“Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317 (1998).
[CrossRef]

Kane, D.

D. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Select. Topics Quantum Electron. 4, 278–284 (1998).
[CrossRef]

Kane, D. J.

Kapteyn, H.

Kapteyn, H. C.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Kobayashi, S.

Leaird, D. E.

Lindinger, A.

Maginnis, K.

Martinez, O. E.

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
[CrossRef] [PubMed]

O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
[CrossRef]

Masihzadeh, O.

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).

Meshulach, D.

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

Mourou, G.

Murnane, M.

Murnane, M. M.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

Nelson, K. A.

Oron, D.

Patel, J. S.

Pearson, B.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

Piper, J. A.

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple-prism beam expanders for pulsed dye lasers,” Opt Commun 43, 303–307 (1982)
[CrossRef]

Plewicki, M.

Polachek, L.

Rabitz, H.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

W. S. Warren, H. Rabitz, and M. Dahleh “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259, 1581 (1993).
[CrossRef] [PubMed]

Reitze, D. H.

Russek, U.

Schlup, P.

J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
[CrossRef]

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Silberberg, Y.

Smirl, A. L.

Smith, A. V.

A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.

Strehle, M.

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Strickland, D.

Takeda, M.

Thurston, R. N.

Tournois, P.

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt Commun 140, 245–249 (1997).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron QE-5, 454 (1969)
[CrossRef]

Trebino, R.

Tull, J. X.

Vdovin, G.

Walecki, W. J.

Warren, W. S.

Weber, S. M.

Wefers, M. M.

Weinacht, T. C.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

Weiner, A. M.

Weiner, A.M.

A.M. Weiner and A.M. Kan’an“Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317 (1998).
[CrossRef]

Weise, F.

Wilson, J.

J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
[CrossRef]

Wullet, J. R.

Xu, L.

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).

Yelin, D.

Zeek, E.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,”Appl. Phys. B 68, 281–284 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, “Coherent learning control of vibrational motion in room temperature molecular gases,” Chem. Phys. Lett. 344, 333–338 (2001).
[CrossRef]

IEEE J. Quantum Electron (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron QE-5, 454 (1969)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A.M. Weiner and A.M. Kan’an“Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317 (1998).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

D. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Select. Topics Quantum Electron. 4, 278–284 (1998).
[CrossRef]

J. Opt. Soc. A (1)

O. E. Martinez, J. P. Gordon, and R. L. Fork “Negative group-velocity disperstion using refraction,” J. Opt. Soc. A 11003–1006 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nature (London) (1)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
[CrossRef]

Opt Commun (2)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt Commun 140, 245–249 (1997).
[CrossRef]

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple-prism beam expanders for pulsed dye lasers,” Opt Commun 43, 303–307 (1982)
[CrossRef]

Opt. Express (1)

J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express 15, 14,8979–8987,108 (2007).
[CrossRef]

Opt. Lett. (13)

T. Brixner and G. Gerber “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

L. Polachek, D. Oron, and Y. Silberberg “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
[CrossRef] [PubMed]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[CrossRef]

W. Dietel, J. J. Fontaine, and J. C. Diels, “Intracavity pulse compression with galss: a new method of generating pulses shorter than 60 fsec,” Opt. Lett. 84–6 (1983)
[CrossRef] [PubMed]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984)
[CrossRef] [PubMed]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude modulation,” Opt. Lett. 10, 609–611 (1985).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullet, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser-pulse shaping by use of microsecond radiofrequency pulses,” Opt. Lett. 19, 737–739 (1994).
[CrossRef] [PubMed]

M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical wave-forms,” Opt. Lett. 201047–1049 (1995).
[CrossRef] [PubMed]

W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
[CrossRef] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg “Adaptive femtosecond pulse compression,” Opt. Lett. 221793–1795 (1997).
[CrossRef]

A. Efimov and D. H. Reitze, “Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier,” Opt. Lett. 23, 1612–1614 (1998).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259, 1581 (1993).
[CrossRef] [PubMed]

Other (2)

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” accepted for publication Opt. Lett. (2007).

A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Unfolded shaper schematic: The angular separation between the polarizations due to the Wollaston prism is imaged onto the prism by a 4- f imaging system with a curved mirror (M1) and a fold mirror (M2). The remaining focusing optics form a standard foldedMartinez stretcher with the reflective spatial light modulator at the Fourier plane. (b) Mapping of wavelength to pixels for incident s- and p-polarization components.

Fig. 2.
Fig. 2.

(a) Phase shaping: Target (red) and measured (blue) sinusoidal phase applied to the p-polarization. (b) Amplitude shaping: Shaped spectral amplitude of the s-polarization, while maintaining a flat spectral phase.

Fig. 3.
Fig. 3.

Type-II SFG for XFROG calibration measurement. (a) Experimental arrangement; OA, optic axis, θ is angle with respect to the optic axis. (b)Measured XFROG signal as the relative delay between the s- and p-polarized pulses is adjusted with the SLM. The residual delay τ d is due to imperfect delay compensation.

Fig. 4.
Fig. 4.

Self-referenced TURTLE characterization of phase, amplitude, and polarization-shaped pulse. (a), (b) FROG reconstructions of p and s polarizations, respectively, including the reconstructed pulse shape (horizontal), spectrum (vertical), and spectral phase (dashed). (c), (d) Retrieved FROG traces for ±45° polarization projections. In each case, the “phantom” trace shows the measured data in the left half-plane and the reconstructed or retrieved trace in the right half-plane. (e) The retrieved field evolution, compared to (f) simulation for a Gaussian transform limited initial pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( Ω ) = E ˜ p ( Ω ) x ̂ + r E ˜ s ( Ω ) e i ( Ω τ + θ ) y ̂

Metrics