Abstract

This paper reports the characterization of hollow metallic waveguides (HMW) to be used as single-mode wavefront filters for nulling interferometry in the 6–20µm range. The measurements presented here were performed using both single-mode and multimode conductive waveguides at 10.6µm. We found propagation losses of about 16dB/mm, which are mainly due to the theoretical skin effect absorption in addition to the roughness of the waveguide’s metallic walls. The input and output coupling efficiency of our samples has been improved by adding tapers to minimize the impedance mismatch. A proper distinction between propagation losses and coupling losses is presented. Despite their elevate propagation losses, HMW show excellent spatial filtering capabilities in a spectral range where photonics technologies are only emerging.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Bracewell, "Detecting non-solar planets by spinning infrared interferometer," Nature (London) 274, 780-781 (1978).
    [CrossRef]
  2. C. V. M. Fridlund, "The Darwin mission," Adv. Space Res. 34, 613-617 (2004).
    [CrossRef]
  3. B. Mennesson, M. Ollivier, and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596-602 (2002).
    [CrossRef]
  4. F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).
  5. J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).
  6. O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
    [CrossRef]
  7. S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
    [CrossRef]
  8. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
    [CrossRef]
  9. C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
    [CrossRef]
  10. P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).
  11. P. Rizzi, Microwave Engineering - Passive Circuits in: Englewood Cliffs, (NJ: Prentice-Hall, 1998).
  12. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (William L. Everitt, Prentice-Hall Inc, 1985), 636-646.
  13. L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).
  14. C. L. Holloway and E. F. Kuester, "Power Loss Associated with Conducting Rough Interfaces," IEEE Trans. Microwave Theory Tech. 48, 1601-1610 (2000).
    [CrossRef]
  15. L. Labadie, E. Le Coarer, R. Maurand, P. Labeye, P. Kern, B. Arezki, and J.-E. Broquin, "Mid-infrared laser light nulling experiment using single-mode conductive waveguides," A and A 471, 355-360 (2007).

2007 (1)

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

2006 (2)

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

2005 (1)

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

2004 (2)

O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
[CrossRef]

C. V. M. Fridlund, "The Darwin mission," Adv. Space Res. 34, 613-617 (2004).
[CrossRef]

2003 (1)

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

2002 (1)

2001 (1)

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

2000 (1)

C. L. Holloway and E. F. Kuester, "Power Loss Associated with Conducting Rough Interfaces," IEEE Trans. Microwave Theory Tech. 48, 1601-1610 (2000).
[CrossRef]

1999 (1)

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

1978 (1)

R. N. Bracewell, "Detecting non-solar planets by spinning infrared interferometer," Nature (London) 274, 780-781 (1978).
[CrossRef]

Arezki, B.

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

Artjuschenko, V. G.

O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
[CrossRef]

Benech, P.

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Berger, J.-P.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Bonhomme, E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, "Detecting non-solar planets by spinning infrared interferometer," Nature (London) 274, 780-781 (1978).
[CrossRef]

Broquin, J.-E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Drouet d'Aubigny, C. Y.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Dumont, P. J.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Flatscher, R.

O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
[CrossRef]

Fridlund, C. V. M.

C. V. M. Fridlund, "The Darwin mission," Adv. Space Res. 34, 613-617 (2004).
[CrossRef]

Golish, D.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Haguenauer, P.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Holloway, C. L.

C. L. Holloway and E. F. Kuester, "Power Loss Associated with Conducting Rough Interfaces," IEEE Trans. Microwave Theory Tech. 48, 1601-1610 (2000).
[CrossRef]

Katzir, A.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Kern, P.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Kirshner, V.

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Kuester, E. F.

C. L. Holloway and E. F. Kuester, "Power Loss Associated with Conducting Rough Interfaces," IEEE Trans. Microwave Theory Tech. 48, 1601-1610 (2000).
[CrossRef]

Labadie, L.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Labeye, P.

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

Lawson, P. R.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Malbet, F.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Mennesson, B.

Millan-Gabet, R.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Millo, A.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Nagli, L.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Noël, P.

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Ollivier, M.

Perraut, K.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Pradel, A.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Rave, E.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Rousselet-Perraut, K.

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Ruilier, C.

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

B. Mennesson, M. Ollivier, and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596-602 (2002).
[CrossRef]

Saguet, P.

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Schanen, I.

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Schanen-Duport, I.

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Severi, M.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Shalem, S.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Swain, M. R.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Traub, W.

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

Tsun, A.

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

Vigreux-Bercovici, C.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Walker, C. K.

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

Wallner, O.

O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
[CrossRef]

A and A (2)

J.-P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, "Integrated optics for astronomical interferometry. IV. First measurements of stars," A and A  376, L31-L34 (2001).

L. Labadie, P. Labeye, P. Kern, I. Schanen, B. Arezki, and J.-E. Broquin, "Modal filtering for Nulling Interferometry. First single-mode conductive waveguides in the mid-infrared," A and A 450, 1265-1275 (2006).

Adv. Space Res. (1)

C. V. M. Fridlund, "The Darwin mission," Adv. Space Res. 34, 613-617 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

S. Shalem, A. Tsun, E. Rave, A. Millo, L. Nagli, and A. Katzir, "Silver halide single-mode fibers for the middle infrared," Appl. Phys. Lett. 87, 091103 (2005).
[CrossRef]

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, "Transmission measurement at 10.6 ?m of Te2As3Se5 rib waveguides on As2S3 substrate," Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

C. L. Holloway and E. F. Kuester, "Power Loss Associated with Conducting Rough Interfaces," IEEE Trans. Microwave Theory Tech. 48, 1601-1610 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (London) (1)

R. N. Bracewell, "Detecting non-solar planets by spinning infrared interferometer," Nature (London) 274, 780-781 (1978).
[CrossRef]

Proc. SPIE (3)

O. Wallner, V. G. Artjuschenko, and R. Flatscher, "Development of silver-halide single-mode fibers for modal filtering in the mid-infrared," Proc. SPIE 5491, 636 - 646 (2004).
[CrossRef]

C. Y. Drouet d'Aubigny, C. K. Walker, D. Golish, M. R. Swain, P. J. Dumont and P. R. Lawson, "Laser micro-machining of waveguide devices for sub-mm and far IR interferometry and detector arrays," Proc. SPIE 4852, 568-580 (2003).
[CrossRef]

P. Labeye, J.-E. Broquin, P. Kern, P. Noël, P. Saguet, L. Labadie, C. Ruilier, V. Kirshner, "Infrared Singlemode Hollow Conductive Waveguides for Stellar Interferometry," Proc. SPIE 6123, 168-176 (2006).

Ser. (1)

F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, "Integrated optics for astronomical interferometry. I. Concept and astronomical applications," A&A Suppl. Ser. 138, 135-145 (1999).

Other (3)

P. Rizzi, Microwave Engineering - Passive Circuits in: Englewood Cliffs, (NJ: Prentice-Hall, 1998).

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (William L. Everitt, Prentice-Hall Inc, 1985), 636-646.

L. Labadie, E. Le Coarer, R. Maurand, P. Labeye, P. Kern, B. Arezki, and J.-E. Broquin, "Mid-infrared laser light nulling experiment using single-mode conductive waveguides," A and A 471, 355-360 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a). Hollow Metallic Waveguide: geometry (b). SEM images of the output of a 10×5µm guide, (c). Photograph of a chip containing several waveguides. The chip is 1-mm high, 1-mm wide and 5-mm long.

Fig. 2.
Fig. 2.

Optical characterization set-up for transmission measurement of conductive waveguides.

Fig. 3.
Fig. 3.

Comparison of measured transmissions between HMW with identical cross sections (10×5 µm). In the vertical direction, the propagation losses are estimated by comparing transmissions between waveguides with different lengths (0.8mm versus 1.8mm and 1mm versus 2mm). An average value of 16dB/mm propagation losses is derived from the experimental data. In the horizontal direction, we estimate the effect of the coupling taper on the global transmission.

Fig. 4.
Fig. 4.

Design of a chip containing waveguides with 45°, 90°, double 45°, double 90° angles (#2, #3, #8, #9). Other waveguides are S-bent with constant or continuous radii of curvature from 500 µm to 600 µm (#4, #5, #6, #7). On the left, a larger waveguide (100 µm) simplifies the alignment of the chip. The two straight waveguides on the right (with and without taper) gives the reference measurement for the transmission value of the chip.

Fig. 5.
Fig. 5.

Transmission for different waveguides with 10×5 µm section (gray columns) and 10×7.5µm sections (hatched columns). The waveguide numbers are the same than for Fig. 4. The missing values (waveguides #3 and #9), correspond to measurements with a too low signal to noise ratio.

Fig. 6.
Fig. 6.

A 1-mm long chip with 2 identical T junctions (on the right and the left). For the T factor characterization the incident beam is injected from the top.

Fig. 7.
Fig. 7.

Schematic view of the behavior of the output taper with respect to a propagation mode. The taper ensures the confinment of the electric field without introducing any additional mode.

Fig. 8.
Fig. 8.

Cross section of the image of the output field for a single mode (10×4.5µm) waveguide (left), and for a multimode (10×10µm) waveguide (right). In both cases, a 10×40µm taper is implemented on each guide extremity.

Tables (1)

Tables Icon

Table 1: Measurement of the transmission of different conductive waveguides with cross sections 10×5µm and 7.5×4.5µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = Φ C , in Φ C , out
α HM = 8.68 × ( 2 π λ ) [ ( λ λ C ) 2 1 ] 1 2

Metrics