Abstract

We experimentally demonstrate the optical transmission at 1550 nm of the fundamental slot modes (quasi-TM modes) in horizontal single and multiple slot waveguides and ring resonators consisting of deposited amorphous silicon and silicon dioxide. We demonstrate that the horizontal multiple slot configuration provides enhanced optical confinement in low index slot regions compared to a horizontal single slot structure with the same total SiO2 layer thickness by comparing their thermo-optic coefficients for the horizontal slot ring resonators. We show in these early structures that horizontal slot waveguides have low propagation loss of 6~7 dB/cm. The waveguide loss is mainly due to a-Si material absorption. The addition of a-Si/SiO2 interfaces does not introduce significant scattering loss in a horizontal multiple slot waveguide compared to a horizontal single slot waveguide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13, 5216 (2005)
    [Crossref] [PubMed]
  2. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092 (2005)
    [Crossref] [PubMed]
  3. T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 8, 1530 (2006)
    [Crossref]
  4. P. Andrew Anderson, Bradley S. Schmidt, and Michal Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 149197 (2006)
    [Crossref] [PubMed]
  5. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626 (2004)
    [Crossref] [PubMed]
  6. N. N. Feng, J. Michel, and L C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron.42, (2006)
    [Crossref]
  7. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
    [Crossref]
  8. P. Karminow and L. W Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62 (1978)
    [Crossref]
  9. L.A. Eldada, “Polymer integrated optics: promise versus practicality,” Proceedings of SPIE 4642, Organic Photonic Materials and Devices IV, 11 (2002)

2006 (2)

2005 (3)

2004 (1)

1978 (1)

P. Karminow and L. W Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62 (1978)
[Crossref]

Almeida, V. R.

Andrew Anderson, P.

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13, 5216 (2005)
[Crossref] [PubMed]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
[Crossref]

Barrios, C. A.

Dalton, L.

Eldada, L.A.

L.A. Eldada, “Polymer integrated optics: promise versus practicality,” Proceedings of SPIE 4642, Organic Photonic Materials and Devices IV, 11 (2002)

Feng, N. N.

N. N. Feng, J. Michel, and L C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron.42, (2006)
[Crossref]

Fujisawa, T.

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 8, 1530 (2006)
[Crossref]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13, 5216 (2005)
[Crossref] [PubMed]

Jen, A. K.-Y.

Karminow, P.

P. Karminow and L. W Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62 (1978)
[Crossref]

Kimerling, L C.

N. N. Feng, J. Michel, and L C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron.42, (2006)
[Crossref]

Koshiba, M.

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 8, 1530 (2006)
[Crossref]

Lawson, R.

Liao, Y.

Lipson, M.

Lipson, Michal

Michel, J.

N. N. Feng, J. Michel, and L C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron.42, (2006)
[Crossref]

Panepucci, R. R.

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13, 5216 (2005)
[Crossref] [PubMed]

Schmidt, Bradley S.

Stulz, L. W

P. Karminow and L. W Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62 (1978)
[Crossref]

Sullivan, P. A.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
[Crossref]

Wang, G.

Xu, Q.

Appl. Phys. Lett. (2)

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005)
[Crossref]

P. Karminow and L. W Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62 (1978)
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 8, 1530 (2006)
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

N. N. Feng, J. Michel, and L C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron.42, (2006)
[Crossref]

L.A. Eldada, “Polymer integrated optics: promise versus practicality,” Proceedings of SPIE 4642, Organic Photonic Materials and Devices IV, 11 (2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the structures of a single (a1) and a triple slot waveguide (b1). The normalized optical field (|E|2) distributions are simulated using a numerical mode solver based on finite-difference time-domain (FDTD) methods. Their corresponding cross-sectional SEM images to the right of the schematic drawings (a2) and (b2) show that the layered structures and each layer thickness are well controlled in fabrication.

Fig. 2.
Fig. 2.

Single and triple slot waveguide losses: waveguide total insertion loss (dB) versus waveguide length (cm). The slope of the linear fit represents the waveguide propagation loss in dB/cm. The lines are corresponding to linear fits, serving the purpose to guide the eyes.

Fig. 3.
Fig. 3.

(a) Ring resonator spectra of a single and a triple slot waveguide. Both ring radii are 10 µm and bus-ring gaps are 250 nm; and (b) the Lorentzian fitting on triple slot ring resonator.

Fig. 4.
Fig. 4.

The measured and simulated thermo-optic coefficients for the quasi-TM modes of a single (a) and a triple (b) slot ring resonator. The simulations match well with the experimental results. The thermo-optic coefficient of the triple slot ring resonator is lower than that of the single slot ring resonator due to the improved confinement in the slot region. The difference between simulation and measurement is possibly due to ring radius and layer thickness variation.

Tables (1)

Tables Icon

Tab. 1. Summary of the measured and simulated FSR and group index around 1550 nm of the single and triple slot ring resonators with 10 µm radius.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n g = n eff ( λ ) λ d n eff ( λ ) d λ
FSR = λ m + 1 λ m λ 2 n g ( λ ) · 2 π R
Q = λ Δ λ 3 d B

Metrics