Abstract

A plasmon wave is perfectly split to 4 identical waves when encountering nano intersection. This is substantially different from the dielectric waveguides case where power coupling to vertical segments is negligible. When larger multimode plasmonic junction is realized — beating and retardation come into effect. The analysis of the plasmonic coupling in this device is helpful also in understanding plasmonic assisted enhanced transmission.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Economou, "Surface Plasmons in thin films," Phys. Rev. 182, 539 (1969).
    [CrossRef]
  2. B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
    [CrossRef]
  3. E. Feigenbaum, M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607 (2007).
    [CrossRef] [PubMed]
  4. H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006)
    [CrossRef] [PubMed]
  5. H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007).
    [CrossRef] [PubMed]
  6. K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003)
    [CrossRef]
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997)
    [CrossRef] [PubMed]
  8. B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004)
    [CrossRef]
  9. P. Ginzburg, D. Arbel, M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006).
    [CrossRef] [PubMed]
  10. G. Veronis, S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211 (2007)
    [CrossRef] [PubMed]
  11. P. Ginzburg, M. Orenstein, "Plasmonic transmission lines: From micro to nano scale lambda/4 impedance matching", the 2007 1st European Topical Meeting on Nanophotonics and Metamaterials, Austria. Paper WED4f.60.
  12. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
    [CrossRef]
  13. B. Wang, G.P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992 (2004)
    [CrossRef] [PubMed]
  14. G. Veronis, S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102, (2005).
    [CrossRef]
  15. E. Feigenbaum, M. Orenstein, "Modeling of Complementary (Void) Plasmon Waveguiding," J. Lightwave Technol. 25, 2547 (2007).
    [CrossRef]
  16. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
    [CrossRef]
  17. C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, "High-Density Integrated Optics," J. Lightwave Technol. 17 (9), 1682 (1999).
    [CrossRef]
  18. E. D. Palik, Handbook of optical constants of solids, 2'nd Ed., (San-Diego: Academic, 1998).
  19. C. Genet, T.W. Ebbesen, "Light in tiny holes," Nature 445, 39 (2007).
    [CrossRef] [PubMed]
  20. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
    [CrossRef]

2007

2006

P. Ginzburg, D. Arbel, M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006)
[CrossRef] [PubMed]

2005

G. Veronis, S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

2004

B. Wang, G.P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992 (2004)
[CrossRef] [PubMed]

B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004)
[CrossRef]

2003

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003)
[CrossRef]

1999

1998

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

1997

1991

B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
[CrossRef]

1969

E. N. Economou, "Surface Plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Arbel, D.

Atwater, H.A.

H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

Catrysse, P. B.

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

Dionne, J.A.

H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007).
[CrossRef] [PubMed]

Ebbesen, T.W.

C. Genet, T.W. Ebbesen, "Light in tiny holes," Nature 445, 39 (2007).
[CrossRef] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Economou, E. N.

E. N. Economou, "Surface Plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Fan, S.

Feigenbaum, E.

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Genet, C.

C. Genet, T.W. Ebbesen, "Light in tiny holes," Nature 445, 39 (2007).
[CrossRef] [PubMed]

Ghaemi, H.F.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Ginzburg, P.

Haus, H.A.

Joannopoulos, J.D.

Johnson, S.G.

Kobayashi, T.

Kurokawa, Y.

H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006)
[CrossRef] [PubMed]

Lezec, H.J.

H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Manolatou, C.

Miyazaki, H.T.

H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006)
[CrossRef] [PubMed]

Morimoto, A.

Mysyrowicz, A.

B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
[CrossRef]

O'Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Orenstein, M.

Prade, B.

B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

Takahara, J.

Taki, H.

Tanaka, K.

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003)
[CrossRef]

Tanaka, M.

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003)
[CrossRef]

Thio, T.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Veronis, G.

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Villeneuve, P.R.

Vinet, J.Y.

B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Wang, B.

B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004)
[CrossRef]

B. Wang, G.P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992 (2004)
[CrossRef] [PubMed]

Wang, G.P.

B. Wang, G.P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992 (2004)
[CrossRef] [PubMed]

B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004)
[CrossRef]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Wolff, P.A.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Yamagishi, S.

Zia, R.

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

Appl. Phys. Lett.

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003)
[CrossRef]

B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004)
[CrossRef]

G. Veronis, S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. A

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006).
[CrossRef]

Nature

C. Genet, T.W. Ebbesen, "Light in tiny holes," Nature 445, 39 (2007).
[CrossRef] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Nature Physics

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. N. Economou, "Surface Plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B

B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Phys. Rev. Lett.

H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006)
[CrossRef] [PubMed]

Science

H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of optical constants of solids, 2'nd Ed., (San-Diego: Academic, 1998).

P. Ginzburg, M. Orenstein, "Plasmonic transmission lines: From micro to nano scale lambda/4 impedance matching", the 2007 1st European Topical Meeting on Nanophotonics and Metamaterials, Austria. Paper WED4f.60.

Supplementary Material (9)

» Media 1: MOV (255 KB)     
» Media 2: MOV (423 KB)     
» Media 3: MOV (362 KB)     
» Media 4: MOV (284 KB)     
» Media 5: MOV (362 KB)     
» Media 6: MOV (229 KB)     
» Media 7: MOV (217 KB)     
» Media 8: MOV (379 KB)     
» Media 9: MOV (356 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Plasmonic gap; “Modal dispersion” over gap size: (a) real and (b) imaginary parts of effective index. Inset: structure schematics. ngap=1, λ0=1.55µm.

Fig. 2.
Fig. 2.

Plasmonic gap X-junction.; 2D-FDTD calculated power transmission of pulses in different arms vs. gap size: (a) Pulse energy ratio of reflection to forward transmission (red) and sideways to forward transmission (green), (b) The imaginary part of the effective index is extracted from the energy ratio of all outgoing pulses to the incoming one (dots). (Calculated values for gap TM modes are given as reference in red). The inset shows the structure schematics. ngap=1, λ0=1.55µm, εM=-96+11i, spatial resolution is 30nm (only for 100nm gap the resolution was 15nm).

Fig. 3.
Fig. 3.

Plasmonic gap X- junction (a) “perfect” split for gap width smaller than λ/2 (0.3µm), (255kb) [Media 1], (b) multimode effects for gap width >λ/2 (0.9µm), (423kb) [Media 2]. λ at pulse center=1.5µm.

Fig. 4.
Fig. 4.

Step by step assembly of the X-junction: two lower metal quadrants (a) H-field (363kb) [Media 3] and (b) E-field, and (c) three metal quadrant, for gap size smaller than λ/2 (GAP=0.3µm), (284kb) [Media 4]. X-junction for gap size ~λ/2: (d) GAP=0.6µm (363kb) [Media 5].

Fig. 5.
Fig. 5.

E-field components in X-junction with gap size smaller than λ/2 (GAP=0.3µm): (a) Ex (229kb) [Media 6], (b) Ez (217kb) [Media 7].

Fig. 6.
Fig. 6.

E-field components in X junction with gap size between λ/2 and λ (GAP=0.9µm): (a) Ex (379kb) [Media 8], (b) Ez (356kb) [Media 9].

Metrics