Abstract

Polarization feedback control of single-photon pulses has been achieved in long-distance fibers for more than 10 hours, which facilitated “one-way” polarization-encoded quantum key distribution with long-term stabilities. Experimental test of polarization encoding in 75 km fibers demonstrated that the single-photon polarization transformation in long-distance fibers could be controlled to provide a typical QBER of (3.9±1.5)% within a long-term operation of 620 minutes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  3. D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).
    [CrossRef]
  4. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
    [CrossRef] [PubMed]
  5. X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).
    [CrossRef] [PubMed]
  6. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).
  7. J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).
    [CrossRef] [PubMed]
  8. K. J. Gordon, V. Fernandez, and G. S. Bulle, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005).
    [CrossRef] [PubMed]
  9. W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef] [PubMed]
  10. H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  11. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [CrossRef] [PubMed]
  12. Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
    [CrossRef] [PubMed]
  13. C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
    [CrossRef] [PubMed]
  14. R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).
    [CrossRef]
  15. R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
    [CrossRef]
  16. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [CrossRef] [PubMed]
  17. G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
    [CrossRef]
  18. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
    [CrossRef] [PubMed]
  19. N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
    [CrossRef]
  20. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
    [CrossRef]
  21. A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
    [CrossRef]
  22. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
    [CrossRef] [PubMed]

2007 (2)

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

2006 (2)

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

2005 (5)

2004 (1)

2003 (1)

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

2002 (3)

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).
[CrossRef]

2000 (2)

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

1996 (1)

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
[CrossRef]

1992 (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

1988 (2)

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

1979 (1)

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).
[CrossRef]

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.

Bergano, N. S.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

Bethune, D. S.

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).
[CrossRef]

Bienfang, J. C.

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.

Bulle, G. S.

Chen, K.

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Chen, X. L.

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Clark, C.W.

Dynes, J. F.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Fernandez, V.

Gao, W. B.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
[CrossRef]

Gordon, K. J.

Gross, A. J.

Gui, Y. Z.

Guo, G. C.

Han, Z. F.

Heidrich, H.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Hershman, B. J.

Hoffmann, D.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Hwang, W. Y.

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

Jahma, M.

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Lo, H. K.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Lu, R.

Lütkenhaus, N.

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Ma, H. X.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Ma, X. F.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Mink, A.

Mo, X. F.

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Muller, A.

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
[CrossRef]

Nakassis, A.

Noe, R.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Pan, J. W.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Peng, C. Z.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Poole, C. D.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

Qi, B.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Qian, L.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Risk, W. P.

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Schulte, H. J.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

Sharpe, A. W.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Shields, A. J.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
[CrossRef] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Su, D. H.

Tang, X.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Ulrich, R.

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).
[CrossRef]

Wagner, R. E.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

Wang, X. B.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Williams, C. J.

Wu, G.

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Yang, D.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yang, T.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yin, H.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yuan, Z. L.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).
[CrossRef] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
[CrossRef]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Zeng, H. P.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Zhang, J.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Zhou, C. Y.

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Zhu, B.

Appl. Phys. Lett. (1)

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).
[CrossRef]

Europhys. Lett. (1)

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).
[CrossRef]

J. Lightwave Technol. (2)

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
[CrossRef]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

New J. Phys. (2)

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).
[CrossRef]

Opt. Commun. (1)

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).
[CrossRef] [PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Phys. Rev. Lett. (8)

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The schematic single-photon polarization stabilization based on the BB84 protocol. Single-photon detectors DH, DV, DQ, DR are used to detect H, V, Q and R polarized photons, respectively. EPC0>~1 is the electronic polarization controllers corresponding to the control of the polarization HV and QR bases; WP: quarter-waveplates; PBS: polarization beam splitters. Inset: the polarization direction of the single-photon pulses at Alice with+45°, -45°, 0° or 90° along the optical axis of the system represented respectively by the point Q, R, H or V in the equator of the Poincare sphere. Polarization direction of the photons arriving at Bob represented by the point P on the Poincare sphere. (b) The schematic setup of stable polarization-encode quantum key distribution; LD0~4: 1550 nm DFB laser diodes with the pulse width about 2 ns; Attn0~6: variable optical attenuators; PC0~6: fiber polarization controllers; OSW1~2: optical switcher; D0~3: single-photon detectors; PCI6251: data acquisition card (National Instruments); AMP: voltage amplifier.

Fig. 2.
Fig. 2.

Feedback signals S1 and their corresponding controlling voltages V1 and V2 for the 50 km (a, b) and 100 km (c,d) fiber systems.

Fig. 3.
Fig. 3.

The comparison of the single-photon polarization variation with (dark lines) and without active feedback controls (grey lines) for S1 monitored in long-term operations of 50 km (a), 75 km (b), and 100 km (c) fiber systems.

Fig. 4.
Fig. 4.

QBERs of polarization-encoded QKD in 75 km fiber system.

Tables (1)

Tables Icon

Table 1. Duration of polarization adjustment in the test

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S 1 = I ( H ) I ( V ) I ( H ) + I ( V ) = cos 2 ε cos 2 θ
S 2 = I ( Q ) I ( R ) I ( Q ) + I ( R ) = cos 2 ε sin 2 θ

Metrics