C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).

[CrossRef]
[PubMed]

K. J. Gordon, V. Fernandez, and G. S. Bulle, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005).

[CrossRef]
[PubMed]

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).

[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).

[CrossRef]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]
[PubMed]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).

[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).

[CrossRef]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]
[PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).

[CrossRef]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).

[CrossRef]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).

[CrossRef]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).

[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).

[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).

[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).

[CrossRef]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).

[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).

[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).

[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett. 35, 840–842 (1979).

[CrossRef]

A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre,” Europhys. Lett. 33, 335–339 (1996).

[CrossRef]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).

[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).

[CrossRef]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).

[CrossRef]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42.1–42.15 (2002).

[CrossRef]

G. Wu, C. Y. Zhou, X. L. Chen, and H. P. Zeng,“High performance of gated-mode single-photon detector at 1.55 um,” Opt. Commun. 265, 126–131 (2006).

[CrossRef]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13, 660–665 (2005).

[CrossRef]
[PubMed]

J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C.W. Clark, and C. J. Williams, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).

[CrossRef]
[PubMed]

K. J. Gordon, V. Fernandez, and G. S. Bulle, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005).

[CrossRef]
[PubMed]

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).

[CrossRef]
[PubMed]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security,” Opt. Lett. 15, 8465–8471 (2007).

W. Y. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).

[CrossRef]
[PubMed]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]
[PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000).

[CrossRef]
[PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]
[PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).

[CrossRef]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), 175–179.