Abstract

In this paper we present a new approach of all-optical extended depth of focus providing two (or more) discrete ranges of focused imaging for close as well as far ranges. The fact that the extended depth of focus is not continuous allows obtaining improved contrast in the two (or more) axial regions of extended depth of focus. The design is aimed for the cell phone camera applications where dual range extended depth of focus can allow simultaneous reading of business cards at very short distance as well as very high contrasted imaging at far range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Cathy and E. R Dowski, "Apparatus and method for extending depth of field in image projection system," US patent 6069738 (May 2000).
  2. W. T. Cathy and E. R Dowski, "Extended depth of field optical systems," PCT publication WO 99/57599 (November 1999).
  3. W. T. Cathy, "Extended depth field optics for human vision," PCT publication WO 03/052492 (June 2003).
  4. E. R Dowski and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  5. J. van der Gracht, E. Dowski, M. Taylor and D. Deaver, "Broadband behavior of an optical-digital focus-invariant system," Opt. Lett. 21, 919-921 (1996).
    [CrossRef] [PubMed]
  6. C. M. Hammond, "Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field," US patent 6097856 (August 2000).
  7. D. Miller and E. Blanko, "System and method for increasing the depth of focus of the human eye," US patent 6554424 (April 2003).
  8. N. Atebara and D. Miller, "Masked intraocular lens and method for treating a patient with cataracts," US patent 4955904 (September 1990).
  9. J. O. Castaneda, E. Tepichin and A. Diaz, "Arbitrary high focal depth with a quasi optimum real and positive transmittance apodizer," Appl. Opt. 28, 2666-2669 (1989).
    [CrossRef]
  10. J. O. Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrary high focal depth," Appl. Opt. 29, 994-997 (1990).
    [CrossRef]
  11. E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti and D. Mendlovic, "All optical extended depth of field imaging system," PCT publication WO 03/076984 (September 2003).
  12. E. Ben-Eliezer, Z. Zalevsky, E. Marom and N. Konforti, "All-optical extended depth of field imaging system," J. Opt. A: Pure Appl. Opt. 5, S164-S169 (2003).
    [CrossRef]
  13. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, "Experimental realization of an imaging system with an extended depth of field," Appl. Opt. 44, 2792-2798 (2005).
    [CrossRef] [PubMed]
  14. A. Sauceda and J. Ojeda-Castaneda, "High focal depth with fractional-power wavefronts," Opt. Lett. 29, 560-562 (2004).
    [CrossRef] [PubMed]
  15. W. Chi and N. George, "Electronic imaging using a logarithmic asphere," Opt. Lett. 26, 875-877 (2001).
    [CrossRef]
  16. Z. Zalevsky, "Optical method and system for extended depth of focus," US patent application 10/97494 (August 2004).
  17. Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer and E. Marom, "All-optical axial super resolving imaging using low-frequency binary-phase mask," Opt. Express 14, 2631-2643 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

2003 (1)

E. Ben-Eliezer, Z. Zalevsky, E. Marom and N. Konforti, "All-optical extended depth of field imaging system," J. Opt. A: Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

2001 (1)

1996 (1)

1995 (1)

1990 (1)

1989 (1)

Ben-Eliezer, E.

Berriel-Valdos, L. R.

Castaneda, J. O.

Cathey, W. T.

Chi, W.

Deaver, D.

Diaz, A.

Dowski, E.

Dowski, E. R

George, N.

Konforti, N.

E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, "Experimental realization of an imaging system with an extended depth of field," Appl. Opt. 44, 2792-2798 (2005).
[CrossRef] [PubMed]

E. Ben-Eliezer, Z. Zalevsky, E. Marom and N. Konforti, "All-optical extended depth of field imaging system," J. Opt. A: Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Marom, E.

Ojeda-Castaneda, J.

Sauceda, A.

Shemer, A.

Taylor, M.

Tepichin, E.

van der Gracht, J.

Zalevsky, Z.

Zlotnik, A.

Appl. Opt. (4)

J. Opt. A: Pure Appl. Opt. (1)

E. Ben-Eliezer, Z. Zalevsky, E. Marom and N. Konforti, "All-optical extended depth of field imaging system," J. Opt. A: Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (8)

W. T. Cathy and E. R Dowski, "Apparatus and method for extending depth of field in image projection system," US patent 6069738 (May 2000).

W. T. Cathy and E. R Dowski, "Extended depth of field optical systems," PCT publication WO 99/57599 (November 1999).

W. T. Cathy, "Extended depth field optics for human vision," PCT publication WO 03/052492 (June 2003).

C. M. Hammond, "Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field," US patent 6097856 (August 2000).

D. Miller and E. Blanko, "System and method for increasing the depth of focus of the human eye," US patent 6554424 (April 2003).

N. Atebara and D. Miller, "Masked intraocular lens and method for treating a patient with cataracts," US patent 4955904 (September 1990).

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti and D. Mendlovic, "All optical extended depth of field imaging system," PCT publication WO 03/076984 (September 2003).

Z. Zalevsky, "Optical method and system for extended depth of focus," US patent application 10/97494 (August 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). An imaging system with a phase element attached to the aperture (b). schematic configuration of the desired system with two focusing regions. (c). schematic description of the sign inversion for the quadratic phase of defocusing due to the binary EDOF element placed in the aperture of the imaging lens.

Fig. 2.
Fig. 2.

Through focus MTF simulations for two discrete focusing regions. (a). object at 15cm, (b). object at infinity.

Fig. 3.
Fig. 3.

Through focus MTF simulations for two discrete focusing regions. (a) emphasis on near objects, (b) emphasis on far objects.

Fig. 4.
Fig. 4.

Through focus MTF simulations for three discrete focusing regions, (a). object at 13cm (b). object at 25cm (c). object at infinity.

Figure 5.
Figure 5.

Experimental results with dual-region EDOF element. (a). the schematic sketch of the setup. (b). experiment with near objects at 15cm and far objects at more than 7km. (c). experiment with near-field business card at 20cm and far objects; left image - results obtained with the EDOF element; right image- a reference camera without the element. (d). varying line-width objects at distances of 10,20,40,80 and 160cm corresponding to the optical magnification and showing the resulted contrast behavior along the Z-axis.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H ( μ ; Z i ) = P ( x + λ Z i μ 2 ) n = 1 N exp ( ia n rect ( x + λ Z i μ 2 n Δ x Δ x ) ) P * ( x λ Z i μ 2 ) n = 1 N exp ( ia n rect ( x λ Z i μ 2 n Δ x Δ x ) ) dx P ( x ) 2 dx
W m = Ψ λ 2 π
Ψ = π b 2 λ ( 1 Z i + 1 Z o 1 F )
1 Z i + 1 Z o = 1 F
inf μ x < μ d , Z 0 R 1 R 2 { H ( μ x , Z 0 ) }
inf μ x < μ d , Z 0 R 1 R 2 { K ( μ x ) H ( μ x , Z 0 ) }
inf μ x < μ d , Z 0 R 1 R 2 { K ( μ x , Z 0 ) H ( μ x , Z 0 ) }
max { inf μ x < μ d Z 0 R 1 R 2 d Z 0 K ( μ x , Z 0 ) H ( μ x , Z 0 ) }
max { inf μ x < μ d { K 1 H ( μ x , E 1 ) + K 2 H ( μ x ; E 2 ) } }
max { inf μ x < μ d { n = 1 N K n H ( μ x , E n ) } }

Metrics