Abstract

We compare the discrete dipole approximation (DDA) and the finite difference time domain (FDTD) method for simulating light scattering of spheres in a range of size parameters x up to 80 and refractive indices m up to 2. Using parallel implementations of both methods, we require them to reach a certain accuracy goal for scattering quantities and then compare their performance. We show that relative performance sharply depends on m. The DDA is faster for smaller m, while the FDTD for larger values of m. The break-even point lies at m=1.4. We also compare the performance of both methods for a few particular biological cells, resulting in the same conclusions as for optically soft spheres.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007).
    [CrossRef]
  2. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11,1491-1499 (1994).
    [CrossRef]
  3. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).
  4. P. Yang and K. N. Liou, "Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 173-221.
  5. Y. You, G. W. Kattawar, C. H. Li, and P. Yang, "Internal dipole radiation as a tool for particle identification," Appl. Opt. 45,9115-9124 (2006).
    [CrossRef] [PubMed]
  6. J. P. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21,1953-1961 (2004).
    [CrossRef]
  7. T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998).
    [CrossRef]
  8. I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
    [CrossRef]
  9. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation," Appl. Opt. 44,5249-5256 (2005).
    [CrossRef] [PubMed]
  10. R. S. Brock, X. Hu, P. Yang, and J. Q. Lu, "Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells," Opt. Express 13,5279-5292 (2005).
    [CrossRef] [PubMed]
  11. R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
    [CrossRef]
  12. R. S. Brock and J. Q. Lu, "Numerical dispersion correction in a parallel FDTD code for the modeling of light scattering by biologic cells," to be submitted to Appl. Opt.
  13. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007).
    [CrossRef]
  14. "Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda (2007).
  15. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
    [CrossRef]
  16. N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998).
    [CrossRef]
  17. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies," Opt. Lett. 27,2118-2120 (2002).
    [CrossRef]
  18. P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
    [CrossRef]
  19. N. B. Piller, "Influence of the edge meshes on the accuracy of the coupled-dipole approximation," Opt. Lett. 22,1674-1676 (1997).
    [CrossRef]
  20. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. I. Theoretical analysis," J. Opt. Soc. Am. A 23,2578-2591 (2006).
    [CrossRef]
  21. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comp. Phys. 114,185-200 (1994).
    [CrossRef]
  22. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333,848-872 (1988).
    [CrossRef]
  23. "Lemieux," http://www.psc.edu/machines/tcs/ (2006).
  24. P. A. Avrorov, M. A. Yurkin, K. A. Semyanov, A. G. Hoekstra, P. A. Tarasov, and V. P. Maltsev, "Characterization of mature red blood cells with scanning flow cytometry," in preparation.
  25. P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999).
    [CrossRef]
  26. R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
    [CrossRef] [PubMed]
  27. R. S. Brock, H. Ding, D. A. Weidner, T. J. McConnel, X. Hu, J. R. Mourant, and J. Q. Lu, "Modeling of the internal optical structure of the nuclei of B-cells," in Frontiers in Optics (Optical Society of America, 2006), p. FTuE2.
  28. "Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/ (2005).
  29. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy," J. Opt. Soc. Am. A 23,2592-2601 (2006).
    [CrossRef]
  30. I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
    [CrossRef]

2007

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
[CrossRef]

2006

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy," J. Opt. Soc. Am. A 23,2592-2601 (2006).
[CrossRef]

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

Y. You, G. W. Kattawar, C. H. Li, and P. Yang, "Internal dipole radiation as a tool for particle identification," Appl. Opt. 45,9115-9124 (2006).
[CrossRef] [PubMed]

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. I. Theoretical analysis," J. Opt. Soc. Am. A 23,2578-2591 (2006).
[CrossRef]

2005

2004

J. P. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21,1953-1961 (2004).
[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
[CrossRef]

2002

1999

P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999).
[CrossRef]

1998

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998).
[CrossRef]

N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998).
[CrossRef]

1997

1994

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comp. Phys. 114,185-200 (1994).
[CrossRef]

B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11,1491-1499 (1994).
[CrossRef]

1988

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333,848-872 (1988).
[CrossRef]

1979

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Andersson-Engels, S.

Ayranci, I.

I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
[CrossRef]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comp. Phys. 114,185-200 (1994).
[CrossRef]

Brock, R. S.

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

R. S. Brock, X. Hu, P. Yang, and J. Q. Lu, "Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells," Opt. Express 13,5279-5292 (2005).
[CrossRef] [PubMed]

Bryant, G. W.

Chaumet, P. C.

P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
[CrossRef]

A. Rahmani, P. C. Chaumet, and G. W. Bryant, "Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies," Opt. Lett. 27,2118-2120 (2002).
[CrossRef]

Chernyshev, A. V.

Comberg, U.

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998).
[CrossRef]

Draine, B. T.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11,1491-1499 (1994).
[CrossRef]

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333,848-872 (1988).
[CrossRef]

Fackerell, E. D.

P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999).
[CrossRef]

Flatau, P. J.

Gajl-Peczalska, K.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

He, J. P.

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy," J. Opt. Soc. Am. A 23,2592-2601 (2006).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. I. Theoretical analysis," J. Opt. Soc. Am. A 23,2578-2591 (2006).
[CrossRef]

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation," Appl. Opt. 44,5249-5256 (2005).
[CrossRef] [PubMed]

Hozier, J.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Hu, X.

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

R. S. Brock, X. Hu, P. Yang, and J. Q. Lu, "Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells," Opt. Express 13,5279-5292 (2005).
[CrossRef] [PubMed]

Hurwitz, R.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Karlsson, A.

Kattawar, G. W.

Kersey, J.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Kolesnikova, I. V.

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

Kubonishi, I.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Kuchel, P. W.

P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999).
[CrossRef]

LeBien, T.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Li, C. H.

Lu, J. Q.

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

R. S. Brock, X. Hu, P. Yang, and J. Q. Lu, "Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells," Opt. Express 13,5279-5292 (2005).
[CrossRef] [PubMed]

Lumme, K.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Maltsev, V. P.

Martin, O. J. F.

N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998).
[CrossRef]

Minowada, J.

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

Mourant, J. R.

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

Muinonen, K.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Penttila, A.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Piller, N. B.

N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998).
[CrossRef]

N. B. Piller, "Influence of the edge meshes on the accuracy of the coupled-dipole approximation," Opt. Lett. 22,1674-1676 (1997).
[CrossRef]

Potapov, S. V.

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
[CrossRef]

A. Rahmani, P. C. Chaumet, and G. W. Bryant, "Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies," Opt. Lett. 27,2118-2120 (2002).
[CrossRef]

Rahola, J.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Selcuk, N.

I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
[CrossRef]

Semyanov, K. A.

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation," Appl. Opt. 44,5249-5256 (2005).
[CrossRef] [PubMed]

Sentenac, A.

P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
[CrossRef]

Shkuratov, Y.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Swartling, J.

Tarasov, P. A.

Vaillon, R.

I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
[CrossRef]

Weidner, D. A.

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

Wriedt, T.

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998).
[CrossRef]

Yang, P.

You, Y.

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. I. Theoretical analysis," J. Opt. Soc. Am. A 23,2578-2591 (2006).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy," J. Opt. Soc. Am. A 23,2592-2601 (2006).
[CrossRef]

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation," Appl. Opt. 44,5249-5256 (2005).
[CrossRef] [PubMed]

Zubko, E.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

Appl. Opt.

Astrophys. J.

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333,848-872 (1988).
[CrossRef]

Bull. Math. Biol.

P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999).
[CrossRef]

IEEE Trans. Ant. Propag.

N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998).
[CrossRef]

Int. J. Cancer

R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979).
[CrossRef] [PubMed]

J. Comp. Phys.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comp. Phys. 114,185-200 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998).
[CrossRef]

I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007).
[CrossRef]

R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007).
[CrossRef]

I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004).
[CrossRef]

Other

"Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda (2007).

R. S. Brock and J. Q. Lu, "Numerical dispersion correction in a parallel FDTD code for the modeling of light scattering by biologic cells," to be submitted to Appl. Opt.

A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).

P. Yang and K. N. Liou, "Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 173-221.

"Lemieux," http://www.psc.edu/machines/tcs/ (2006).

P. A. Avrorov, M. A. Yurkin, K. A. Semyanov, A. G. Hoekstra, P. A. Tarasov, and V. P. Maltsev, "Characterization of mature red blood cells with scanning flow cytometry," in preparation.

R. S. Brock, H. Ding, D. A. Weidner, T. J. McConnel, X. Hu, J. R. Mourant, and J. Q. Lu, "Modeling of the internal optical structure of the nuclei of B-cells," in Frontiers in Optics (Optical Society of America, 2006), p. FTuE2.

"Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/ (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Profile of a typical RBC used for the simulations.

Fig. 2.
Fig. 2.

An image of a B-cell precursor obtained with confocal microscopy.

Fig. 3.
Fig. 3.

Comparison of the DDA and FDTD results with the exact Mie solution for simulation of S 11(θ) for spheres with x=20 and m equals (a) 1.02, (b) 1.4, and (c) 2.

Fig. 4.
Fig. 4.

Comparison of shape and discretization errors for DDA simulation of S 11(θ) for sphere with x=20 and m =1.02. All errors are taken relative to the exact Mie solution. Total error is the sum of the two.

Fig. 5.
Fig. 5.

Comparison of the DDA and FDTD results with the reference results for simulation of S 11(θ) for (a) the RBC and (b) the BCP. Part (b) also includes the Mie solution for the coated sphere model of the BCP.

Tables (3)

Tables Icon

Table 1. Performance results of the DDA vs. the FDTD for spheres with different x and m . a

Tables Icon

Table 2. Same as Table 1 but for accuracy results.

Tables Icon

Table 3. Performance and accuracy results of the DDA vs. the FDTD for the biological cells and the coated sphere model. a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r 4 + 2 Sr 2 z 2 + z 4 + Pr 2 + Qz 2 + R = 0 ,

Metrics