Abstract

We develop a generic model of excitation and fluorescence recapturing within filled microstructured optical fibres (MOFs) with arbitrary structure and demonstrate that the light-matter overlap alone does not determine the optimal fibre choice. Fibre designs with sub-wavelength features and high-index glasses exhibit localised regions of high intensity, and we show that these regions can lead to approximately two orders of magnitude enhancement of fluorescence recapturing. Here we show how this regime can be exploited for sensing and demonstrate experimentally in-fibre excitation and fluorescence recapturing within a filled, solid-core MOF.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stewart and B. Culshaw, "Optical Waveguide Modelling and Design for Evanescent Field Chemical Sensors," Opt. Quantum Electron. 26, s249 (1994).
    [CrossRef]
  2. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective Detection of Antibodies in Microstructured Polymer Optical Fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  3. S. O. Konorov, A. M. Zheltikov, and M. Scalora, "Photonic-Crystal Fiber as a Multifunctional Optical Sensor and Sample Collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  4. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
    [CrossRef] [PubMed]
  5. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
    [CrossRef]
  6. F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
    [CrossRef]
  7. S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
    [CrossRef]
  8. W. Henry, "Evanescent Field Devices: A Comparison Between Tapered Optical Fibres and Polished or D-Fibres," Opt. Quantum Electron. 26, s261-s272 (1994).
    [CrossRef]
  9. P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
    [CrossRef]
  10. Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
    [CrossRef]
  11. J. Lou, L. Tong, and Z. Ye, "Modeling of Silica Nanowires for Optical Sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  12. Y. Zhu, H. Du, and R. Bise, "Design of Solid-Core Microstructured Optical Fiber with Steering-Wheel Air Cladding for Optimal Evanescent-Field Sensing," Opt. Express 14, 3541-3546 (2006).
    [CrossRef] [PubMed]
  13. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic Crystal Fiber Based Evanescent-Wave Sensor for Detection of Biomolecules in Aqueous Solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  14. Y. K. Lize, E. Magi, V. Taeed, J. Bolger, P. Steinvurzel, and B. Eggleton, "Microstructured Optical Fiber Photonic Wires with Subwavelength Core Diameter," Opt. Express 12, 3209-3217 (2004).
    [CrossRef] [PubMed]
  15. K. J. Rowland, S. Afshar V., and T. M. Monro, "Nonlinearity Enhancement of Filled Microstructured Fibers Operating in Nanowire Regime," in Proceedings of OFC 2006, p. OTuH3 (2006).
  16. L. Tong, J. Lou, and E. Mazur, "Single-Mode Guiding Properties of Subwavelength-Diameter Silica and Silicon Wire Waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  17. S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
    [CrossRef]
  18. Z. Liu and J. Pawliszyn, "Capillary Isoelectric Focusing of Proteins with Liquid Core Waveguide Laser-Induced Fluorescence Whole Column Imaging Detection," Anal. Chem. 75, 4887-4894 (2003).
    [CrossRef] [PubMed]
  19. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
    [CrossRef]
  20. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, and H. Simonsen, "Gas Sensing Using Air-Guiding Photonic Bandgap Fibers," Opt. Express 12, 4080 (2004).
    [CrossRef] [PubMed]
  21. H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).
  22. M. Nagel, A. Marchewka, and H. Kurz, "Low-Index Discontinuity Terahertz Waveguides," Opt. Express 14, 9944 (2006).
    [CrossRef] [PubMed]
  23. Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
    [CrossRef]
  24. N. Ganesh and B. T. Cunningham, "Photonic Crystal Enhanced Fluorescence," in Technical Digest, p. CThz5 (Optical Society of America, 2007).
  25. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and Confining Light in Void Nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  26. R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
    [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and hall, 2-6 Boundary Row, London SE1 8HN, UK, 1995).
  28. F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, Cambridge, UK, 1992).
  29. D. Marcuse, "Launching Light Into Fiber Cores from Sources Located in the Cladding," J. Lightwave Technol. 6, 1273-1279 (1988).
    [CrossRef]
  30. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth Glass Holey Fibers with High Nonlinearity," Opt. Express 12, 5082-87 (2004).
    [CrossRef] [PubMed]
  31. C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serrao, and C. H. B. Cruz, "Single-Design- Parameter Microstructured Optical Fiber for Chromatic Dispersion Tailoring and Evanescent Field Enhancement," Opt. Lett. 32, 3324-26 (2007).
    [CrossRef] [PubMed]
  32. A. Zheltikov, "Gaussian-Mode Analysis of Waveguide-Enhanced Kerr-Type Nonlinearity of Optical Fibers and Photonic Wires," J. Opt. Soc. Am. B 22, 1100-1104 (2005).
    [CrossRef]
  33. P. Agrawal, Nonlinear Fiber Optics. Academic press, Burlington, (2007).
  34. E. W. Washburn, "The Dynamics of Capillary Flow," Physical Review 17, 273-283 (1921).
    [CrossRef]
  35. I. B. Berlman, Handbook of fluorescence spectra of aromatic molecules (Academic Press, New York, 1971).
  36. E. Schartner, Y. Ruan, P. Hoffman, and T. M. Monro, "An Optical Fibre Protein Sensor," in COIN-ACOFT 2007 Proceeding, pp. WeB1-3 (Australian Optical Society, 2007).
  37. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, " Fabrication and Characterization of Low Loss Rib Chalcogenide Waveguide Made by Dry Etching, " Opt. Express 12, 5140-5145(2004).
    [CrossRef] [PubMed]
  38. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced Loss in Extruded Microstructured Optical Fiber," Electron. Lett.,  43, 1343-1345(2007).
    [CrossRef]

2007 (6)

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
[CrossRef]

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serrao, and C. H. B. Cruz, "Single-Design- Parameter Microstructured Optical Fiber for Chromatic Dispersion Tailoring and Evanescent Field Enhancement," Opt. Lett. 32, 3324-26 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced Loss in Extruded Microstructured Optical Fiber," Electron. Lett.,  43, 1343-1345(2007).
[CrossRef]

2006 (5)

M. Nagel, A. Marchewka, and H. Kurz, "Low-Index Discontinuity Terahertz Waveguides," Opt. Express 14, 9944 (2006).
[CrossRef] [PubMed]

Y. Zhu, H. Du, and R. Bise, "Design of Solid-Core Microstructured Optical Fiber with Steering-Wheel Air Cladding for Optimal Evanescent-Field Sensing," Opt. Express 14, 3541-3546 (2006).
[CrossRef] [PubMed]

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

2005 (4)

2004 (9)

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, " Fabrication and Characterization of Low Loss Rib Chalcogenide Waveguide Made by Dry Etching, " Opt. Express 12, 5140-5145(2004).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth Glass Holey Fibers with High Nonlinearity," Opt. Express 12, 5082-87 (2004).
[CrossRef] [PubMed]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, and H. Simonsen, "Gas Sensing Using Air-Guiding Photonic Bandgap Fibers," Opt. Express 12, 4080 (2004).
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and Confining Light in Void Nanostructure," Opt. Lett. 29, 1209-1211 (2004).
[CrossRef] [PubMed]

R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic Crystal Fiber Based Evanescent-Wave Sensor for Detection of Biomolecules in Aqueous Solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

Y. K. Lize, E. Magi, V. Taeed, J. Bolger, P. Steinvurzel, and B. Eggleton, "Microstructured Optical Fiber Photonic Wires with Subwavelength Core Diameter," Opt. Express 12, 3209-3217 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, "Single-Mode Guiding Properties of Subwavelength-Diameter Silica and Silicon Wire Waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

2003 (1)

Z. Liu and J. Pawliszyn, "Capillary Isoelectric Focusing of Proteins with Liquid Core Waveguide Laser-Induced Fluorescence Whole Column Imaging Detection," Anal. Chem. 75, 4887-4894 (2003).
[CrossRef] [PubMed]

1998 (1)

H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).

1997 (1)

Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

1994 (2)

W. Henry, "Evanescent Field Devices: A Comparison Between Tapered Optical Fibres and Polished or D-Fibres," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

G. Stewart and B. Culshaw, "Optical Waveguide Modelling and Design for Evanescent Field Chemical Sensors," Opt. Quantum Electron. 26, s249 (1994).
[CrossRef]

1988 (1)

D. Marcuse, "Launching Light Into Fiber Cores from Sources Located in the Cladding," J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

1921 (1)

E. W. Washburn, "The Dynamics of Capillary Flow," Physical Review 17, 273-283 (1921).
[CrossRef]

Almeida, V. R.

Asimakis, S.

Bailey, R. E.

R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
[CrossRef]

Bang, O.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective Detection of Antibodies in Microstructured Polymer Optical Fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Barretto, E. C. S.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Barrios, C. A.

Barth, M.

S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
[CrossRef]

Benabid, F.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Benson, O.

S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
[CrossRef]

Bise, R.

Bjarklev, A.

Bolger, J.

Boussard-Pledel, C.

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

Bureau, B.

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

Carlsen, A.

Chesini, G.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Cordeiro, C. M. B.

C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serrao, and C. H. B. Cruz, "Single-Design- Parameter Microstructured Optical Fiber for Chromatic Dispersion Tailoring and Evanescent Field Enhancement," Opt. Lett. 32, 3324-26 (2007).
[CrossRef] [PubMed]

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Couny, F.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Cruz, C. H. B.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serrao, and C. H. B. Cruz, "Single-Design- Parameter Microstructured Optical Fiber for Chromatic Dispersion Tailoring and Evanescent Field Enhancement," Opt. Lett. 32, 3324-26 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Culshaw, B.

Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

G. Stewart and B. Culshaw, "Optical Waveguide Modelling and Design for Evanescent Field Chemical Sensors," Opt. Quantum Electron. 26, s249 (1994).
[CrossRef]

Du, H.

Ebendorff-Heidepriem, H.

Eggleton, B.

Emiliyanov, G.

Finazzi, V.

Folkenberg, J. R.

Fragnito, H. L.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Frampton, K.

Franco, M. A. R.

C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serrao, and C. H. B. Cruz, "Single-Design- Parameter Microstructured Optical Fiber for Chromatic Dispersion Tailoring and Evanescent Field Enhancement," Opt. Lett. 32, 3324-26 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Geschke, O.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Hansen, T.

Hansen, T. P.

Henry, W.

W. Henry, "Evanescent Field Devices: A Comparison Between Tapered Optical Fibres and Polished or D-Fibres," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

Hoiby, P. E.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
[CrossRef]

Jarvis, R.

Jensen, J. B.

Jin, W.

Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Kao, H. P.

H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).

Knight, J. C.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Koizumi, F.

Konorov, S. O.

Kurz, H.

Large, M. C. J.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Li, W.

Li, Y.

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced Loss in Extruded Microstructured Optical Fiber," Electron. Lett.,  43, 1343-1345(2007).
[CrossRef]

Lipson, M.

Liu, Z.

Z. Liu and J. Pawliszyn, "Capillary Isoelectric Focusing of Proteins with Liquid Core Waveguide Laser-Induced Fluorescence Whole Column Imaging Detection," Anal. Chem. 75, 4887-4894 (2003).
[CrossRef] [PubMed]

Lize, Y. K.

Lou, J.

Lucas, P.

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

Ludvigsen, H.

Luther-Davies, B.

Lwin, R.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

Madsen, N.

Magi, E.

Maier, S. A.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Marchewka, A.

Marcuse, D.

D. Marcuse, "Launching Light Into Fiber Cores from Sources Located in the Cladding," J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

Matos, C. J. S.

Mazur, E.

Meachede, D.

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

Monro, T. M.

Moore, R. C.

Nagel, M.

Nie, S.

R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pawliszyn, J.

Z. Liu and J. Pawliszyn, "Capillary Isoelectric Focusing of Proteins with Liquid Core Waveguide Laser-Induced Fluorescence Whole Column Imaging Detection," Anal. Chem. 75, 4887-4894 (2003).
[CrossRef] [PubMed]

Pedersen, L. H.

Petersen, J.

Petropoulos, P.

Rauschenbeutel, A.

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

Richardson, D. J.

Riishede, J.

Riley, M. R.

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

Rindorf, L.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Ritari, T.

Rode, A.

Ruan, Y.

Scalora, M.

Schoeniger, J. S.

H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).

Serrao, V. A.

Simonsen, H.

Sircilli, F.

Smith, A. M.

R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
[CrossRef]

Smolka, S.

S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
[CrossRef]

Sokolowski, M.

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

Sorensen, T.

Steinvurzel, P.

Stewart, G.

Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

G. Stewart and B. Culshaw, "Optical Waveguide Modelling and Design for Evanescent Field Chemical Sensors," Opt. Quantum Electron. 26, s249 (1994).
[CrossRef]

Taeed, V.

Tong, L.

Tuominen, J.

Vetsch, E.

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

Warken, F.

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

Washburn, E. W.

E. W. Washburn, "The Dynamics of Capillary Flow," Physical Review 17, 273-283 (1921).
[CrossRef]

Wiederhecker, G. S.

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Xu, Q.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
[CrossRef]

Yang, N.

H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
[CrossRef]

Ye, Z.

Zheltikov, A.

Zheltikov, A. M.

Zhu, Y.

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards Biochips Using Microstructured Optical Fiber Sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Anal. Biochem. (1)

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, "Advances in Chalcogenide Fiber Evanescent Wave Biochemical Sensing," Anal. Biochem. 351, 1-10 (2006).
[CrossRef]

Anal. Chem. (1)

Z. Liu and J. Pawliszyn, "Capillary Isoelectric Focusing of Proteins with Liquid Core Waveguide Laser-Induced Fluorescence Whole Column Imaging Detection," Anal. Chem. 75, 4887-4894 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of Functional Microstructured Optical Fibers Through a Selective- Filling Technique," Appl. Phys. Lett. 85, 5182 (2004).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Selectively Coated Photonic Crystal Fiber for Highly Sensitive Fluorescence Detection," Appl. Phys. Lett. 90, 111,101 (2007).
[CrossRef]

Electron. Lett. (1)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced Loss in Extruded Microstructured Optical Fiber," Electron. Lett.,  43, 1343-1345(2007).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, "Launching Light Into Fiber Cores from Sources Located in the Cladding," J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of Evanescent Fluorescence from Fiber-Optic Sensors by Thin-Film Sol-Gel Coating," J. Opt. Soc. Am. A 15, 21632,170 (1998).

J. Opt. Soc. Am. B (1)

Nature Photonics (1)

Q2. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field Enhancement Within an Optical Fibre with a Subwavelength Air Core," Nature Photonics 1, 115 (2007).
[CrossRef]

Opt. Express (13)

M. Nagel, A. Marchewka, and H. Kurz, "Low-Index Discontinuity Terahertz Waveguides," Opt. Express 14, 9944 (2006).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth Glass Holey Fibers with High Nonlinearity," Opt. Express 12, 5082-87 (2004).
[CrossRef] [PubMed]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, " Fabrication and Characterization of Low Loss Rib Chalcogenide Waveguide Made by Dry Etching, " Opt. Express 12, 5140-5145(2004).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, and H. Simonsen, "Gas Sensing Using Air-Guiding Photonic Bandgap Fibers," Opt. Express 12, 4080 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, "Single-Mode Guiding Properties of Subwavelength-Diameter Silica and Silicon Wire Waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

J. Lou, L. Tong, and Z. Ye, "Modeling of Silica Nanowires for Optical Sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

Y. Zhu, H. Du, and R. Bise, "Design of Solid-Core Microstructured Optical Fiber with Steering-Wheel Air Cladding for Optimal Evanescent-Field Sensing," Opt. Express 14, 3541-3546 (2006).
[CrossRef] [PubMed]

Y. K. Lize, E. Magi, V. Taeed, J. Bolger, P. Steinvurzel, and B. Eggleton, "Microstructured Optical Fiber Photonic Wires with Subwavelength Core Diameter," Opt. Express 12, 3209-3217 (2004).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective Detection of Antibodies in Microstructured Polymer Optical Fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

S. O. Konorov, A. M. Zheltikov, and M. Scalora, "Photonic-Crystal Fiber as a Multifunctional Optical Sensor and Sample Collector," Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-Core Optical Fibre for Evanescent Sensing Applications," Opt. Express 14, 13,056-13,066 (2006).
[CrossRef]

F. Warken, E. Vetsch, D. Meachede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-Sensitive Surface Absorption Spectroscopy Using Sub-Wavelength Diameter Optical Fibers," Opt. Express 15, 11,952-11,958 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly Efficient Fluorescence Sensing with Hollow Core Photonic Crystal Fibers," Opt. Express 15, 12,783 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (2)

G. Stewart and B. Culshaw, "Optical Waveguide Modelling and Design for Evanescent Field Chemical Sensors," Opt. Quantum Electron. 26, s249 (1994).
[CrossRef]

W. Henry, "Evanescent Field Devices: A Comparison Between Tapered Optical Fibres and Polished or D-Fibres," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

Physica E (1)

R. E. Bailey, A. M. Smith, and S. Nie, "Quantum Dots in Biology and Medicine," Physica E 25, 1-12 (2004).
[CrossRef]

Physical Review (1)

E. W. Washburn, "The Dynamics of Capillary Flow," Physical Review 17, 273-283 (1921).
[CrossRef]

Sens. Actuators B (1)

Q1. G. Stewart, W. Jin, and B. Culshaw, "Prospects for Fibre-Optic Evanescent-Field Gas Sensors Using Absorption in the Near-Infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Other (7)

K. J. Rowland, S. Afshar V., and T. M. Monro, "Nonlinearity Enhancement of Filled Microstructured Fibers Operating in Nanowire Regime," in Proceedings of OFC 2006, p. OTuH3 (2006).

I. B. Berlman, Handbook of fluorescence spectra of aromatic molecules (Academic Press, New York, 1971).

E. Schartner, Y. Ruan, P. Hoffman, and T. M. Monro, "An Optical Fibre Protein Sensor," in COIN-ACOFT 2007 Proceeding, pp. WeB1-3 (Australian Optical Society, 2007).

P. Agrawal, Nonlinear Fiber Optics. Academic press, Burlington, (2007).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and hall, 2-6 Boundary Row, London SE1 8HN, UK, 1995).

F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, Cambridge, UK, 1992).

N. Ganesh and B. T. Cunningham, "Photonic Crystal Enhanced Fluorescence," in Technical Digest, p. CThz5 (Optical Society of America, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a filled MOF showing the parameters used in modelling (a) and the SEM image of the cross section of the MOF used for the modelling and experiment (b). Dashed circles in (b) show the idealized geometry used for modelling. The effective area of the fundamental mode for the geometry shown in (b) when the holes are filled with Rhodamine B in an isopropanol solution (c). The wavelength is 590 nm, refractive index of isopropanol is 1.3774 and different substrate glasses are marked.

Fig. 2.
Fig. 2.

Numerical results of the fluorescence capture fraction (FCF) as a function of fibre length (a) and core diameter (b) for different substrate glasses. Other parameters are; core diameter 1.0 µm, in (a) and concentration 5×10-5 Mol in (a) and (b). Maximum FCF in (b) corresponds to optimum fibre length.

Fig. 3.
Fig. 3.

Numerical results of Normalized Overlap Integral (NOI), defined in the text and calculated at the wavelength of 590 nm (a), and the fluorescent capture fraction (FCF) as a function concentration (b). In (b) dashed and solid lines correspond to core diameters 0.2 and 1.0 µm respectively, and the insets show the linear scale plot of the main graph over the same concentration range.

Fig. 4.
Fig. 4.

Intensity distribution of the fundamental mode for Silica (a) and Bismuth (b). In both (a) and (b) core diameters are 0.2 µm and the wavelengths are 590 nm. The mode is more confined in (b) and a thin layer of high intensity region is formed at the glass-hole interface.

Fig. 5.
Fig. 5.

Experimental setup for filling an MOF (a). The experimental and theoretical predications of filling time as a function of filled length (b). For the theoretical predictions it is assumed that the holes of the fibre are circles whose area are 1, 0.8, or 0.6 times of that of the real fibre in Fig. 1 (117, 94, and 70 µm 2 respectively). Experimental set up (c) and results (d) for capturing the fluorescent emission by the core of the MOF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P Ej ( z ) = a Ej 2 N Ej exp ( γ Ej z ) ; N Ej = 1 2 Re { A ( e Ej × h Ej * ) . z ̂ dA }
γ Ej = k ( ε 0 μ 0 ) 1 2 A n E n E i e Ej 2 dA N Ej ,
d P Fj ( z ) = π exp [ γ Fj ( L z ) ] 4 ω F μ 0 n F H k F N Fj H z 1 z 2 e Fj 2 P D ( r ) d z dA .
P D ( r ) = 1 2 ξ α B n E H ( ε 0 μ 0 ) 1 2 a Ej 2 δ Ej H Re [ ( e Ej × h Ej * ) . z ̂ ] exp ( γ Ej z ) ,
δ Ej H = H e Ej 2 dA H ( e Ej × h Ej * ) . z ̂ dA .
d P Fj ( z ) = π ξ α B n E H ( ε 0 μ 0 ) 1 2 a Ej 2 δ Ej H 8 ω F μ 0 n F H k F N Fj exp [ γ Fj ( L z ) ] exp ( γ Ej z ) dz
× H e Fj 2 Re [ ( e Ej × h Ej * ) . z ̂ ] dA .
FCF = P Fj ( L ) P Ej ( 0 ) = AB j exp ( γ Fj L ) ( γ Ej γ Fj ) { 1 exp [ ( γ Fj γ Ej ) L ] }
A = ξ α B λ 2 8 π ( n F H ) 2 ; B j = n F H n E H ( ε 0 μ 0 ) δ Ej H H e Fj 2 Re [ ( e Ej × h Ej * ) . z ̂ ] dA 4 N Fj N Ej .

Metrics