Abstract

We studied the electric and magnetic resonances of U-shaped SRRs. We showed that higher order excitation modes exist in both of the electric and magnetic resonances. The nodes in the current distribution were found for all the resonance modes. It turns out that the magnetic resonances are the modes with odd-number of half-wavelength of the current wave, i.e. λ/2, 3λ/2 and 5λ/2 modes, and the electric resonances are modes with integer number of whole-wavelength of current wave, i.e. λ, 2λ and 3λ modes. We discussed the electric moment and magnetic moment of the electric and magnetic resonances, and their dependence to the length of two parallel side arms. We show that the magnetic moment of magnetic resonance vanishes as the length of side arms of the SRR reduces to zero, i.e. a rod does not give any magnetic moment or magnetic resonance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "Experimental demonstration of negative index of refraction," Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
    [CrossRef]
  3. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
    [CrossRef]
  4. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
    [CrossRef]
  5. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1(1), 41-48 (2007).
    [CrossRef]
  6. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
    [CrossRef]
  7. R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
    [CrossRef]
  8. N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
    [CrossRef]
  9. J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
    [CrossRef]
  10. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
    [CrossRef] [PubMed]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  12. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  13. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Metamaterials at Telecommunication and Visible Frequencies," Physical Review Letters 95(20), 203901 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v95/e203901.
    [CrossRef]
  14. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
    [CrossRef] [PubMed]
  15. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters 84(15), 2943-2945 (2004). URL http://link.aip.org/link/?APL/84/2943/1.
    [CrossRef]
  16. J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Physical Review B (Condensed Matter and Materials Physics) 73(4), 041101 (pages 4) (2006). URL http://link.aps.org/abstract/PRB/v73/e041101.
    [CrossRef]
  17. J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters 88(22), 221103 (pages 3) (2006). URL http://link.aip.org/link/?APL/88/221103/1.
    [CrossRef]
  18. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability," Physical Review Letters 94(3), 037402 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v94/e037402.
    [CrossRef]
  19. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Physical Review Letters 95(13), 137404 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v95/e137404.
    [CrossRef]
  20. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  21. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
    [CrossRef] [PubMed]
  22. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
    [CrossRef]
  23. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm," Optics Letters 32, 1671- 1673 (2007). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1671.
    [CrossRef] [PubMed]
  24. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B (Condensed Matter and Materials Physics) 65(19), 195104 (pages 5) (2002). URL http://link.aps.org/abstract/PRB/v65/e195104.
    [CrossRef]
  25. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).
  26. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B (Condensed Matter and Materials Physics) 71(24), 245105 (pages 22) (2005). URL http://link.aps.org/abstract/PRB/v71/e245105.
    [CrossRef]
  27. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).
  28. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).
  29. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
    [CrossRef]
  30. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
    [CrossRef]

2007

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1(1), 41-48 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
[CrossRef]

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

2006

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

2005

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

2004

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
[CrossRef]

2000

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

1999

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

1968

V. G. Veselago, "Experimental demonstration of negative index of refraction," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

Chipouline, A.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

Dolling, G.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

Economou, E.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Economou, E. N.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
[CrossRef]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Giessen, H.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Gundogdu, T.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Gundogdu, T. F.

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

Kafesaki, M.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
[CrossRef]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

Katsarakis, N.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

Konstantinidis, G.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).

Kostopoulos, A.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Kuhl, J.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Lederer, F.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Linden, S.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).

Nemat-Nasser, S.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

Padilla, W.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Penciu, R.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Penciu, R. S.

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Pertsch, T.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

Petschulat, J.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

Pshenay-Severin, E.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

Schultz, S.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1(1), 41-48 (2007).
[CrossRef]

Smith, D.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
[CrossRef]

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

Tsiapa, I.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "Experimental demonstration of negative index of refraction," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Vier, D.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).

Wegener, M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zentgraf, T.

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhou, J. F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Advanced Materials

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Advanced Materials 18, 1941-1952 (2006).
[CrossRef]

IEEE Journal of Selected Topics in Quantum Electronics

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: Magnetism at optical frequencies," IEEE Journal of Selected Topics in Quantum Electronics 12, 1097-1105 (2006).
[CrossRef]

IEEE Trans. Microwave Theroy Tech.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theroy Tech. 47, 2075 (1999).
[CrossRef]

Nature Photonics

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1(1), 41-48 (2007).
[CrossRef]

Optics Express

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14(19), 8827-8836 (2006).
[CrossRef]

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Optics Express 15(14), 8871-8883 (2007).
[CrossRef]

Optics Letters

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32(1), 53-55 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 31, 1800-1802 (2006).
[CrossRef] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. Penciu, T. Gundogdu, M. Kafesaki, E. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[CrossRef] [PubMed]

Photon. and Nanostruct.: Fundam. and Appl.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, "High transmittance left-handed materials involving symmetric split-ring resonators," Photon. and Nanostruct.: Fundam. and Appl. 5, 149 (2007).
[CrossRef]

Photonics Nanostructures-fundamentals Applications

R. S. Penciu, M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of lefthanded behavior of composite metamaterials," Photonics Nanostructures-fundamentals Applications 4(1), 12-16 (2006).
[CrossRef]

Physical Review Letters

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 93(10) (2004).

Science

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305(5685), 788-792 (2004).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315(5808), 47-49 (2007).
[CrossRef]

Sov. Phys. Usp.

V. G. Veselago, "Experimental demonstration of negative index of refraction," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Metamaterials at Telecommunication and Visible Frequencies," Physical Review Letters 95(20), 203901 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v95/e203901.
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters 84(15), 2943-2945 (2004). URL http://link.aip.org/link/?APL/84/2943/1.
[CrossRef]

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Physical Review B (Condensed Matter and Materials Physics) 73(4), 041101 (pages 4) (2006). URL http://link.aps.org/abstract/PRB/v73/e041101.
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters 88(22), 221103 (pages 3) (2006). URL http://link.aip.org/link/?APL/88/221103/1.
[CrossRef]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability," Physical Review Letters 94(3), 037402 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v94/e037402.
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Physical Review Letters 95(13), 137404 (pages 4) (2005). URL http://link.aps.org/abstract/PRL/v95/e137404.
[CrossRef]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 68(6), 065,602 (2003).

U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm," Optics Letters 32, 1671- 1673 (2007). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1671.
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B (Condensed Matter and Materials Physics) 65(19), 195104 (pages 5) (2002). URL http://link.aps.org/abstract/PRB/v65/e195104.
[CrossRef]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 71(3), 036,617 (2005).

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B (Condensed Matter and Materials Physics) 71(24), 245105 (pages 22) (2005). URL http://link.aps.org/abstract/PRB/v71/e245105.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of periodically arranged U-shaped SRR arrays; (b) a single unit cell with geometrical parameters; (c) three different configurations of incident electric field, E⃗, magnetic field, H⃗, and wave vector, k⃗.

Fig. 2.
Fig. 2.

Extracted effective permittivity Re(ε(ω)) (a) and effective permeability Re(µ(ω)) (b) for the magnetic resonance (red solid), the electric excitation coupling to the magnetic resonance (EEMR) (blue dashed) and the short-wire-like resonance (green dotted) of U-shaped SRRs. The geometric parameters are ax =ay =1 µm, az =0.2 µm, lx =ly =0.8 µm, w=0.1 µm and t=0.05 µm. The U-shaped SRR is made of gold described by the Drude model with plasma frequency, fp =2175 THz, and damping frequency, =6.5 THz.

Fig. 3.
Fig. 3.

Transmission spectra (a,b) and the extracted permittivity, Re(ε), (c,d) of the U-shaped SRRs response to the incident EM wave. The directions of E⃗, H⃗ and k⃗ were shown as the insets.

Fig. 4.
Fig. 4.

Distribution of the perpendicular component of the surface electric field (color scale; red positive, blue negative) and the bulk current density (arrows) for the lowest few resonant modes of the SRR. The SRR metal is made of a Drude model for gold (fp =2175 THz, =6.5 THz), the geometry parameters are: ax =ay =1 µm, az =200 nm (unit cell size), lx =ly =800 nm (arm length), w=100 nm, t=50 nm (ring width and thickness, respectively). The current distributions are shown temporally π/2 phase shifted against the charge distribution.

Fig. 5.
Fig. 5.

Current distribution of the lowest 3 modes. (a) λ/2, 3λ/2, and 5λ/2 mode for the EEMR response; (b) λ, 2λ, and 3λ mode for the short-wire-like response. Due to the nonzero response of lower order modes, nodes of higher order modes only reach zero at the positions of the lowest nodes.

Fig. 6.
Fig. 6.

Magnitude of the normalized polarization density, P, of the U-shaped SRRs with ly =0.8 µm (red solid), 0.4 µm (blue dashed) and 0.11 µm (green dotted), respectively. (a) Px component as E⃗ parallel to the bottom part of SRRs. The other two components Py and Pz are nearly zero (not shown in the figure); (b) Py component as E⃗ parallel to the side part of SRRs. The other two components Px and Pz are nearly zero (not shown in the figure). The polarizations of the incident EM wave are shown as the insets in the panel (a) and (b). The x, y and z coordinates were shown in Fig. 1.

Fig. 7.
Fig. 7.

(a) Magnitude of the normalized magnetization, Mz , and (b) the extracted permittivity, Re(ε), of the U-shaped SRRs with the length ly =0.8 µm (red solid), 0.4 µm (blue dashed) and 0.11 µm (green dotted), respectively. The polarizations of the incident EM wave are shown as the insets in the panel (a). The short-wire-like resonance with incident EM wave polarized as shown in Fig. 1(c.ii) has zero magnetic moment (not shown in the figure).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p = ( D ε 0 E ) d r

Metrics