Abstract

The detection of quantum-dot labeled proteins is demonstrated within lead silicate soft glass microstructured optical fibers using near infrared light. The protein concentration is measured using a new fluorescence capture approach. Light guided within the fiber is used both to excite and collect fluorescent photons, and the detection limit achieved without optimization of the fiber geometry is 1 nM, using just 3% of the guided mode of the fiber. Issues that currently restrict the detection of lower protein concentrations are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  2. W. Urbanczyk, "Photonic crystal fibers: new opportunities for sensing," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.
  3. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Bjarklev, "Hollow-core Bragg fiber as a bio-sensor," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. S?rensen, T. P. Hansen, AND H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  5. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  6. S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
    [CrossRef]
  7. S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
    [CrossRef] [PubMed]
  8. A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
    [CrossRef]
  9. W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, S261-S272 (1994).
    [CrossRef]
  10. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  11. S. Afshar V., S. Warren-Smith, and T. M. Monro, "Fluorescence-based sensing within microstructured fibers," Opt. Express, in press, 2007.
    [CrossRef]
  12. http://www.schott.com/optics_devices/english/download/index.html.
  13. http://probes.invitrogen.com/products/qdot/.
  14. H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
    [CrossRef]
  15. http://www.licor.com/bio/IRDyes/PL-IRDye800CW.jsp.
  16. http://www.schott.com/optics_devices/english/download/ti-36_fluorescence_of_optical_glass.pdf/.
  17. http://probes.invitrogen.com/resources/spectraviewer/.
  18. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded micorstructured optical fiber," presented at the Australian Conference on Fibre Technology, Australia, 24-27 July 2007.
  19. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, " Fabrication and characterization of low loss rib chalcogenide waveguide made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  20. T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
    [CrossRef]

2007

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

S. Afshar V., S. Warren-Smith, and T. M. Monro, "Fluorescence-based sensing within microstructured fibers," Opt. Express, in press, 2007.
[CrossRef]

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

2005

2004

2001

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

1994

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, S261-S272 (1994).
[CrossRef]

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Barth, M.

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Benson, O.

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

Bjarklev, A.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Carlsen, A.

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

Folkenberg, J. R.

Frampton, K.

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Hansen, T. P.

Henry, W.

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, S261-S272 (1994).
[CrossRef]

Hoiby, P. E.

Jarvis, R.

Jensen, J. B.

Kato, M.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

Kimura, H.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

Kurashige, S.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

Li, W.

Lou, J.

Ludvigsen, H.

Luther-Davies, B.

Madsen, N.

Monro, T. M.

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Moore, R. C.

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

Nakamura, T.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Petersen, J. C.

Petropoulos, P.

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Riishede, J.

Ritari, T.

Rode, A.

Ruan, Y.

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

Smolka, S.

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

Tong, L.

Tuominen, J.

Wakamatsu, K.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

Ye, Z.

Appl. Phys. Lett.

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

Cell Biol. Int.

T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007).
[CrossRef]

J. Non-Cryst. Solids

H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004).
[CrossRef]

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Opt. Eng.

A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, S261-S272 (1994).
[CrossRef]

Other

W. Urbanczyk, "Photonic crystal fibers: new opportunities for sensing," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Bjarklev, "Hollow-core Bragg fiber as a bio-sensor," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.

http://www.schott.com/optics_devices/english/download/index.html.

http://probes.invitrogen.com/products/qdot/.

http://www.licor.com/bio/IRDyes/PL-IRDye800CW.jsp.

http://www.schott.com/optics_devices/english/download/ti-36_fluorescence_of_optical_glass.pdf/.

http://probes.invitrogen.com/resources/spectraviewer/.

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded micorstructured optical fiber," presented at the Australian Conference on Fibre Technology, Australia, 24-27 July 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Experimental setup; (b). Suspended core fibers in lead silicate glasses used in our experiments.

Fig. 2.
Fig. 2.

Fraction of the guided mode guided within water-filled holes for SF57 and F2 MOFs at 532 nm.

Fig. 3.
Fig. 3.

(a). Measured fluorescence of the SF57 MOF; (b). Measured fluorescence of the F2 MOF. The insert is magnified spectrum for 10 nM fluorescence.

Fig. 4.
Fig. 4.

(a) spectrum comparison from two protein concentrations of 50 nM and 10 nM filled into the F2 MOF, and background fluorescence from unfilled F2 MOF; (b) salt deposit at the input endface of the F2 MOF filled with 1×PBS buffer.

Fig. 5.
Fig. 5.

Fluorescence signals from unfilled and 1x TBS filled F2 MOFs and their subtraction. (a) for 5 nM protein concentration; (b) for 1 nM protein concentration.

Metrics