Abstract

Tunable diode laser absorption spectroscopy using microresonator whispering-gallery modes (WGMs) is demonstrated. WGMs are excited around the circumference of a cylindrical cavity 125 µm in diameter using an adiabatically tapered fiber. The microresonator is very conveniently tuned by stretching, enabling the locking of an individual WGM to the laser. As the laser is scanned in frequency over an atmospheric trace-gas absorption line, changes in the fiber throughput are recorded. The experimental results of cavity-enhanced detection using such a microresonator are centimeter effective absorption pathlengths in a volume of only a few hundred microns cubed. The measured effective absorption pathlengths are in good agreement with theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [Crossref]
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
    [Crossref]
  4. K. Ikeda and Y. Fainman, “Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide,” Opt. Lett. 31, 3486–3488 (2006).
    [Crossref] [PubMed]
  5. K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007).
    [Crossref]
  6. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
    [Crossref]
  7. R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY1991).
    [Crossref]
  8. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [Crossref]
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
    [Crossref]
  10. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14, 5266–5278 (2006).
    [Crossref] [PubMed]
  11. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [Crossref]
  12. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
    [Crossref]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mu m,” Opt. Lett. 21, 1966–1968 (1996).
    [Crossref] [PubMed]
  14. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  15. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
    [Crossref]
  16. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J Quantum Electron.,  QE-23, 123–129 (1987).
    [Crossref]
  17. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
    [Crossref]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
    [Crossref]

2007 (2)

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

2006 (2)

2005 (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2002 (2)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

1998 (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

1996 (1)

1992 (3)

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[Crossref]

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J Quantum Electron.,  QE-23, 123–129 (1987).
[Crossref]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J Quantum Electron.,  QE-23, 123–129 (1987).
[Crossref]

Boskovic, A.

Chernikov, S. V.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Fainman, Y.

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007).
[Crossref]

K. Ikeda and Y. Fainman, “Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide,” Opt. Lett. 31, 3486–3488 (2006).
[Crossref] [PubMed]

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

Foster, M. A.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Gaeta, A. L.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Gruner-Nielsen, L.

Hagan, D. J.

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Ikeda, K.

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007).
[Crossref]

K. Ikeda and Y. Fainman, “Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide,” Opt. Lett. 31, 3486–3488 (2006).
[Crossref] [PubMed]

Iodice, M.

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Levring, O. A.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

Mazzi, G.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Mourchid, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Ouzounov, D. G.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

Said, A. A.

Sheik-Bahae, M.

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Sirleto, L.

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J Quantum Electron.,  QE-23, 123–129 (1987).
[Crossref]

Street, R. A.

R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY1991).
[Crossref]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Taylor, J. R.

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Van Stryland, E. W.

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

Wang, J.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Wei, T. H.

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Young, J.

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Appl. Phys. Lett. (3)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

IEEE J Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J Quantum Electron.,  QE-23, 123–129 (1987).
[Crossref]

IEEE J Sel. Top. Quantum Electron. (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous siliconbased guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

J. Appl. Phys. (2)

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[Crossref]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

J. Non-Cryst. Solids. (1)

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids. 141, 76–87 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Solid-State Electron. (1)

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007).
[Crossref]

Other (1)

R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of the z-scan measurement setup.

Fig. 2.
Fig. 2.

Plot of normalized transmittance at z=0 vs. parameter q 0 (see Eq. (3)) for z-scan measurement without aperture.

Fig. 3.
Fig. 3.

(a) Transmission spectra of the samples using a super-continuum light source with the wavelength ranging from 500nm (2.48eV) to 1100nm (1.13eV); (b) Plot of absorption coefficient vs. photon energy as extracted from (a). The values in Ref. [9] for a-Si:H and c-Si are also plotted. (Red square: a-Si, blue circle: a-Si:H(1), pink triangle: a-Si:H(2), black cross: c-Si)

Fig. 4.
Fig. 4.

(a) z-scan traces when the aperture is present for a 1mm-thick SiO2 substrate and a-Si sample; (b) z-scan traces without aperture for all samples measured at different average powers.

Fig. 5.
Fig. 5.

(a) Parameter q 0 found from z-scan dips using the relation of Fig. 2, with relation to the average power, together with the linear fits (dotted lines) from the analytic formula of Eq. (3b); (b) Data from (a) together with the relation q 0=β I 0 L eff plotted for a-Si and a-Si:H as solid lines.

Fig. 6.
Fig. 6.

Schematic diagram describing two-step absorption (TSA) through midgap localized states.

Fig. 7.
Fig. 7.

Plot of β vs. α from Eq. (6) with example waveguide losses of 1dB/cm for channel waveguides and 1dB/mm for slab photonic crystal (PhC) waveguides.

Fig. 8.
Fig. 8.

SEM micrograph of a fabricated composite rib waveguide with a loss of about 3dB/mm.

Fig. 9.
Fig. 9.

Plot of inverse transmittance vs. the input peak power (a) for the ac-Si composite rib waveguide; (b) for pure c-Si rib waveguide with similar dimensions.

Fig. 10.
Fig. 10.

Probe signal modulated by free-carrier nonlinear refraction excited by pump laser pulses.

Fig. 11.
Fig. 11.

(a) SEM micrograph of fabricated ring resonator using ac-Si composite channel waveguide; (b) Cross section and mode profile of the ac-Si composite channel waveguide; (c) Measured spectrum for quasi-TM mode of the ring resonator.

Fig. 12.
Fig. 12.

Switching operation of the ring resonator using 430nm femtosecond pump pulses incident from the top and 1550nm probe at the resonant wavelength, with (a) ac-Si composite channel waveguide; (b) pure c-Si channel waveguide.

Tables (1)

Tables Icon

Table 1. Samples for z-scan measurement.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dI dz = ( α + β I ) I ,
I ( L , r , t , z ) = I ( 0 , r , t , z ) exp ( α L ) 1 + q ( r , t , z ) ,
T ( z = 0 ) = 1 π q 0 ln [ 1 + q 0 exp ( τ 2 ) ] d τ ,
q 0 = β I 0 L eff ,
dI dz = ( α + β I + σ N ) I ,
σ = e 0 3 λ 2 4 π 2 c 3 ε 0 n 0 ( 1 m e 2 μ e + 1 m h 2 μ h ) ,
N = α 2 ω π τ p 2 ln 2 I ,
β = β + σ α 2 ω π τ p 2 ln 2 .
T 1 = T 0 1 + C · β · L eff T 0 · A eff P ,

Metrics