Abstract

Tunable diode laser absorption spectroscopy using microresonator whispering-gallery modes (WGMs) is demonstrated. WGMs are excited around the circumference of a cylindrical cavity 125 µm in diameter using an adiabatically tapered fiber. The microresonator is very conveniently tuned by stretching, enabling the locking of an individual WGM to the laser. As the laser is scanned in frequency over an atmospheric trace-gas absorption line, changes in the fiber throughput are recorded. The experimental results of cavity-enhanced detection using such a microresonator are centimeter effective absorption pathlengths in a volume of only a few hundred microns cubed. The measured effective absorption pathlengths are in good agreement with theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
    [CrossRef]
  4. K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
    [CrossRef] [PubMed]
  5. K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
    [CrossRef]
  6. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
    [CrossRef]
  7. R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991).
    [CrossRef]
  8. A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
    [CrossRef]
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
    [CrossRef]
  10. M. Iodice, G. Mazzi and L. Sirleto, "Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide," Opt. Express 14, 5266-5278 (2006).
    [CrossRef] [PubMed]
  11. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).
    [CrossRef]
  12. M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  14. M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  15. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
    [CrossRef]
  16. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
    [CrossRef]
  17. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
    [CrossRef]

2007

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

2006

2005

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

2003

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

2002

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

1998

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

1996

1992

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).
[CrossRef]

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
[CrossRef]

Boskovic, A.

Chernikov, S. V.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Fainman, Y.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef] [PubMed]

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Foster, M. A.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Gaeta, A. L.

Garcia, H.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

Gruner-Nielsen, L.

Hagan, D. J.

Harke, A.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

Ikeda, K.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef] [PubMed]

Iodice, M.

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

Krause, M.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Levring, O. A.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

Mazzi, G.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Mourchid, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Mueller, J.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Ouzounov, D. G.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Said, A. A.

Sheik-Bahae, M.

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Sirleto, L.

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Taylor, J. R.

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Van Stryland, E. W.

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Wang, J.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Wei, T. H.

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Young, J.

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Appl. Phys. Lett.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Electron. Lett.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

IEEE J Quantum Electron.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

J. Appl. Phys.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

J. Non-Cryst. Solids.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Solid-State Electron.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Top. Quantum Electron.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Other

R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of the z-scan measurement setup.

Fig. 2.
Fig. 2.

Plot of normalized transmittance at z=0 vs. parameter q 0 (see Eq. (3)) for z-scan measurement without aperture.

Fig. 3.
Fig. 3.

(a) Transmission spectra of the samples using a super-continuum light source with the wavelength ranging from 500nm (2.48eV) to 1100nm (1.13eV); (b) Plot of absorption coefficient vs. photon energy as extracted from (a). The values in Ref. [9] for a-Si:H and c-Si are also plotted. (Red square: a-Si, blue circle: a-Si:H(1), pink triangle: a-Si:H(2), black cross: c-Si)

Fig. 4.
Fig. 4.

(a) z-scan traces when the aperture is present for a 1mm-thick SiO2 substrate and a-Si sample; (b) z-scan traces without aperture for all samples measured at different average powers.

Fig. 5.
Fig. 5.

(a) Parameter q 0 found from z-scan dips using the relation of Fig. 2, with relation to the average power, together with the linear fits (dotted lines) from the analytic formula of Eq. (3b); (b) Data from (a) together with the relation q 0=β I 0 L eff plotted for a-Si and a-Si:H as solid lines.

Fig. 6.
Fig. 6.

Schematic diagram describing two-step absorption (TSA) through midgap localized states.

Fig. 7.
Fig. 7.

Plot of β vs. α from Eq. (6) with example waveguide losses of 1dB/cm for channel waveguides and 1dB/mm for slab photonic crystal (PhC) waveguides.

Fig. 8.
Fig. 8.

SEM micrograph of a fabricated composite rib waveguide with a loss of about 3dB/mm.

Fig. 9.
Fig. 9.

Plot of inverse transmittance vs. the input peak power (a) for the ac-Si composite rib waveguide; (b) for pure c-Si rib waveguide with similar dimensions.

Fig. 10.
Fig. 10.

Probe signal modulated by free-carrier nonlinear refraction excited by pump laser pulses.

Fig. 11.
Fig. 11.

(a) SEM micrograph of fabricated ring resonator using ac-Si composite channel waveguide; (b) Cross section and mode profile of the ac-Si composite channel waveguide; (c) Measured spectrum for quasi-TM mode of the ring resonator.

Fig. 12.
Fig. 12.

Switching operation of the ring resonator using 430nm femtosecond pump pulses incident from the top and 1550nm probe at the resonant wavelength, with (a) ac-Si composite channel waveguide; (b) pure c-Si channel waveguide.

Tables (1)

Tables Icon

Table 1. Samples for z-scan measurement.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dI dz = ( α + β I ) I ,
I ( L , r , t , z ) = I ( 0 , r , t , z ) exp ( α L ) 1 + q ( r , t , z ) ,
T ( z = 0 ) = 1 π q 0 ln [ 1 + q 0 exp ( τ 2 ) ] d τ ,
q 0 = β I 0 L eff ,
dI dz = ( α + β I + σ N ) I ,
σ = e 0 3 λ 2 4 π 2 c 3 ε 0 n 0 ( 1 m e 2 μ e + 1 m h 2 μ h ) ,
N = α 2 ω π τ p 2 ln 2 I ,
β = β + σ α 2 ω π τ p 2 ln 2 .
T 1 = T 0 1 + C · β · L eff T 0 · A eff P ,

Metrics