Abstract

We present the first measurements of optical nonlinearity due to free carrier effects in amorphous silicon films using z-scan technique, demonstrating enhanced nonlinearity due to existence of midgap localized states. We also introduce, fabricate and experimentally characterized a new composite waveguide structure consisting of amorphous and crystalline silicon. The fabricated composite rib waveguide confirms to have enhanced free-carrier nonlinearity at the estimated value of 4cm/GW, i.e., seven times larger than that of a crystalline silicon waveguide. Due to existence of the midgap localized states in amorphous silicon, the measured free-carrier lifetime in the composite rib waveguide was about ~300ps which is shorter than the values reported in the literature for similar geometries made of silicon.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).
  4. K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
    [CrossRef]
  5. K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
    [CrossRef]
  6. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
    [CrossRef]
  7. R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991).
  8. A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
    [CrossRef]
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).
  10. M. Iodice, G. Mazzi and L. Sirleto, "Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide," Opt. Express 14, 5266-5278 (2006).
    [CrossRef]
  11. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).
  12. M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996).
  14. M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  15. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
    [CrossRef]
  16. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).
  17. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
    [CrossRef]

2007 (2)

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

2006 (2)

2005 (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

2003 (1)

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

2002 (2)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

1998 (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

1996 (1)

1992 (3)

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).

Boskovic, A.

Chernikov, S. V.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Dinu, M.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Fainman, Y.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef]

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Foster, M. A.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Gaeta, A. L.

Garcia, H.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

Gruner-Nielsen, L.

Hagan, D. J.

Harke, A.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

Ikeda, K.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef]

Iodice, M.

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

Krause, M.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Levring, O. A.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

Mazzi, G.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Mourchid, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Mueller, J.

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Ouzounov, D. G.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov and A. L. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Said, A. A.

Sheik-Bahae, M.

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Sirleto, L.

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Taylor, J. R.

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Van Stryland, E. W.

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

Wang, J.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Wei, T. H.

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Young, J.

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

IEEE J Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J Quantum Electron.,  QE-23, 123-129 (1987).

IEEE J. Sel. Top. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002).

J. Appl. Phys. (2)

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71, 1927-1935 (1992).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra and E. W. J. M. van der Drift, "Amorphous silicon waveguides for microphotonics," J. Appl. Phys. 92, 649-653 (2002).
[CrossRef]

J. Non-Cryst. Solids. (1)

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid and W. L. NighanJr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Solids. 141, 76-87 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Solid-State Electron. (1)

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Top. Quantum Electron. (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J Sel.Top. Quantum Electron. 4, 997-1002 (1998).

Other (1)

R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics