Abstract

We propose a new design of hole-assisted fiber (HAF) that can compensate for the accumulated dispersion in single-mode fiber link along with dispersion slope, thus providing broadband dispersion compensation over C-band as well as can amplify the signal channels by utilizing the stimulated Raman scattering phenomena. The proposed dispersion-compensating HAF (DCHAF) exhibits the lowest dispersion coefficient of -550 ps/nm/km at 1550 nm with an effective mode area of 15.6 µm2. A 2.52 km long module of DCHAF amplifies incoming signals by rendering a gain of 4.2 dB with ±0.8 dB gain flatness over whole C-band. To obtain accurate modal properties of DCHAF, a full-vector finite element method (FEM) solver is employed. The macro-bend loss characteristics of the proposed DCHAF are evaluated using FEM solver in cylindrical coordinate systems of a curved DCHAF, and low bending losses (<10-2 dB/m for 1 cm bending radius) are obtained for improved DCHAF design while keeping intact its dispersion compensation and Raman amplification properties. We have further investigated the birefringence characteristics that can give significant information on the polarization mode dispersion of DCHAF by assuming a certain deformation (eccentricity e=7%) either in air-holes or in the doped core or in both at a same time. It is noticed that the distortion in air-holes induces a birefringence of 10-5, which is larger by a factor of 10 than the birefringence caused due to the core ellipticity. A PMD of 11.3 ps/√km is obtained at 1550 nm for distorted air-holes DCHAF structure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L.U. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, "Dispersion-compensating fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
    [CrossRef]
  2. K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
    [CrossRef]
  3. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
    [CrossRef]
  4. P.St.J. Russell, "Photonic crystal fiber," Science 288, 358-362 (2003).
    [CrossRef]
  5. J.C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007).
    [CrossRef]
  6. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, The Netherlands, 2003).
    [CrossRef]
  7. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  8. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  9. S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
    [CrossRef]
  10. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
    [CrossRef] [PubMed]
  11. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
    [CrossRef] [PubMed]
  12. S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
    [CrossRef]
  13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
    [CrossRef] [PubMed]
  14. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005).
    [CrossRef]
  15. B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russell, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004).
    [PubMed]
  16. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, "Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss," Opt. Express 9, 681-686 (2001).
    [CrossRef] [PubMed]
  17. K. Saitoh, Y. Tsuchida, and M. Koshiba, "Bending-insensitive single-mode hole-assisted fibers with reduced splice loss," Opt. Lett. 30, 1779-1781 (2005).
    [CrossRef] [PubMed]
  18. B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  19. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
    [CrossRef]
  20. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006).
    [CrossRef] [PubMed]
  21. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004).
    [CrossRef]
  22. M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
    [CrossRef]
  23. Through e-mail correspondence with crystal-fiber company (www.crystal-fiber.com).
  24. G. Millot, A. Sauter, J.M. Dudley, L. Provino, and R.S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002).
    [CrossRef]
  25. A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
    [CrossRef]
  26. D.A. Nolan, X. Chen, and M. Li, "Fibers with low polarization-mode dispersion," J. Lightwave Technol. 22, 1066-1077 (2004).
    [CrossRef]
  27. D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006).
    [CrossRef]

2007 (2)

J.C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007).
[CrossRef]

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

2006 (4)

2005 (5)

2004 (2)

2003 (2)

2002 (2)

G. Millot, A. Sauter, J.M. Dudley, L. Provino, and R.S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

2001 (1)

2000 (2)

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

1997 (1)

1996 (1)

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

1994 (1)

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

1992 (1)

B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

Auguste, J.-L.

F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Birks, T.A.

Blondy, J.-M.

F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Bottacini, M.

Chen, X.

Clapeau, M.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Cucinotta, A.

Dal Forno, A.O.

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

Dudley, J.M.

Dussardier, B.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Edvold, B.

Fujisawa, T.

Gérôme, F.

Ghatak, A.K.

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Goyal, I.C.

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Gruner-Nielsen, L.

Gupta, D.

D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006).
[CrossRef]

Hasegawa, T.

Heffner, B.L.

B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

Jakobsen, D.

Jindal, R.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Jorgensen, C.

Jorgensen, L.U.

Kakihara, K.

Kanamori, H.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Knight, J.C.

Kono, N.

Koshiba, M.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
[CrossRef] [PubMed]

K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006).
[CrossRef] [PubMed]

K. Saitoh, Y. Tsuchida, and M. Koshiba, "Bending-insensitive single-mode hole-assisted fibers with reduced splice loss," Opt. Lett. 30, 1779-1781 (2005).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, "Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss," Opt. Express 9, 681-686 (2001).
[CrossRef] [PubMed]

Koyano, Y.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Kristensen, P.

Kumar, A.

D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006).
[CrossRef]

Li, M.

Marcou, J.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Millot, G.

Monnom, G.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Nishimura, H.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Nishimura, M.

Nolan, D.A.

Onishi, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, "Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss," Opt. Express 9, 681-686 (2001).
[CrossRef] [PubMed]

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Ostrowsky, D.B.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Pal, B.P.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Palai, P.

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Palsdottir, B.

Paradisi, A.

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

Passy, R.

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

Poli, F.

Provino, L.

Roberts, P.J.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Russell, P.St.J.

Saitoh, K.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006).
[CrossRef] [PubMed]

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

K. Saitoh, Y. Tsuchida, and M. Koshiba, "Bending-insensitive single-mode hole-assisted fibers with reduced splice loss," Opt. Lett. 30, 1779-1781 (2005).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

Sasaoka, E.

Sauter, A.

Selleri, S.

Shigematsu, M.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Thyagarajan, K.

D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Tsuchida, Y.

Tsuji, Y.

Varshney, R.K.

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Varshney, S.K.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

von der Weid, J.P.

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

Wada, K.

Wandel, M.

Windeler, R.S.

Electron. Lett. (2)

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000).
[CrossRef]

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Opt. Lett. (4)

Science (1)

P.St.J. Russell, "Photonic crystal fiber," Science 288, 358-362 (2003).
[CrossRef]

Other (3)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, The Netherlands, 2003).
[CrossRef]

B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russell, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004).
[PubMed]

Through e-mail correspondence with crystal-fiber company (www.crystal-fiber.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic of the germanium-doped HAF that has surrounding six air-holes with hole diameter d=0.35 µm, spaced at a pitch constant Λ=1.3 µm. The doped radius a is 1.085 µm, (b) equivalent refractive index profile of the proposed DCHAF, where Δ+ and Δ- show the raising and lowering index deltas, respectively. The raising index delta Δ+, achieved via germanium doping, is set to 3.0%, whereas the Δ- is determined by air-holes encircling the doped core. The background material is pure silica glass.

Fig. 2.
Fig. 2.

(a) The optical field intensity distribution in DCHAF at 1550 nm wavelength. (b) Effective index variation of cladding (solid red curve), fundamental mode (solid blue curve), and doped-core (solid green curve), (c) the magnified view of the effective indices variation of cladding and fundamental mode. It can be clearly seen from the numerical results that the index of the fundamental mode approaches to the cladding index as the wavelength increases and becomes smaller after a particular wavelength, referred as phase matching wavelength, which is approximately 1.7 µm in DCHAF.

Fig. 3.
Fig. 3.

(a) Chromatic dispersion of the optimized DCHAF (solid blue curve) and the residual dispersion (solid green curve) left behind after the dispersion compensation of 80 km SMF link by 2.52 km DCHAF, (b) the impact of ±2% tolerances present either in the pitch constant or the hole-diameter. The DCHAF exhibits a largest negative dispersion coefficient of -552 ps/nm/km at 1550 nm. It is found from tolerance analysis that chromatic dispersion may change by ±12% and ±18% for ±2% tolerances in pitch constant and hole-diameter, respectively. However, the RDS of the DCHAF with tolerances can be matched with the RDS of conventional SMF.

Fig. 4.
Fig. 4.

(a) Macro-bending loss characteristics of DCHAF at a wavelength of 1550 nm as a function of bending radius with and without additional air-hole ring, as depicted on right, (b) schematic of the improved DCHAF structure, where an additional air-hole ring is introduced in the outer cladding region with large air-hole diameter d’=12 µm and air-hole spacing Λ’=15 µm. It is apparent from the results that the DCHAF without an extra air-hole ring suffer from large bending losses at smaller bending radii, however, the bending losses reduce sharply when an additional air-hole ring is introduced, which lowers the bending losses below 0.01 dB/m at 1 cm bending radius. Surprisingly, it is also detected that the dispersion properties of DCHAF don’t change by the presence of an extra air-hole ring.

Fig. 5.
Fig. 5.

(a) Spectral variation of RGE γ R (dotted blue curve) and effective mode area A eff (solid red curve). A peak RGE of 3.4 W-1·km-1 is obtained at 12.6 THz frequency shift and a 15.6 µm2 of effective mode area is found at 1550 nm wavelength, (b) variation of Raman gain as a function of the wavelength when a 2.52 km long DCHAF module is singly pumped in the backward direction. A peak gain of 4.2 dB is incurred with ±0.8 dB gain ripples over C-band. The DCHAF Raman amplifier exhibits a 9 dB of noise figure, a 42 dB of OSNR, and a -57 dB double Rayleigh backscattering values on average.

Fig. 6.
Fig. 6.

Cross-sections of DCHAF when a certain distortion (e=7%) presents in air-holes or in the core; the air-holes are stretched along (a) x-axis, (b) y-axis, the core is elongated along (c) x-axis, (d) y-axis, (e) both core and air-holes are extended along x-axis (f) core is elongated along x-axis while the air-holes along to y-axis, (g) core is elongated along y-axis whereas air-holes along to x-axis, (h) both core and air-holes are stretched along y-axis.

Fig. 7.
Fig. 7.

Birefringence as a function of wavelength in DCHAF (a) for structures 6(a)–6(d) and (b) for structures 6(e)–6(h). It can be deduced that the deviation in air-holes imparts a larger birefringence than the presence of ovality in the core, almost higher by a factor of 10. It is also apparent that the presence of distortion in both the core and air-holes at the same time enhances the birefringence slightly.

Fig. 8.
Fig. 8.

(a) Comparison of the induced birefringence for two different eccentricities 7% and 40%, present in air-holes only. The birefringence increases by a factor of 10 when the air-holes get more elliptical as shown by dotted blue and red curves. (b) Impact of parameter’s distortion on the dispersion properties of optimized DCHAF. The solid and dotted curves correspond to the x- and y-polarization of the fundamental mode. It can be deduced from the results that the distortion in air-holes shifts the dispersion coefficient at 1550 nm by ±2%, whereas the deformation in core changes the dispersion coefficient by ±0.5%.

Fig. 9.
Fig. 9.

Variation of Maxwellian probability distribution Pτ) as a function of DGD (a) in various DCHAF structures (6(a)–6(d)), (b) in 6(a) DCHAF structure where air-holes are stretched horizontally while the doped core is kept circular for different wavelengths. The wavelength increases in a step of 5 nm from solid blue curve (1530 nm) to solid black curve (1560 nm). It is seen that the peak of the PD shifts to the left as wavelength decreases, suggesting low PMD values.

Fig. 10.
Fig. 10.

Mean PMD coefficient for 6(a) DCHAF structure as a function of wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e h = 1 b 2 a 2 a > b
e V = 1 a 2 b 2 b > a
T i = ( cos θ i sin θ i sin θ i cos θ i ) ( exp ( j π B h i λ ) 0 0 exp ( j π B h i λ ) ) ( cos θ i sin θ i sin θ i cos θ i )
T = i = 1 N T i
Δ τ ( λ 1 ) = arg ( ρ 1 ρ 2 ) d ω
P ( Δ τ ) = 32 π 2 Δ τ 2 Δ τ 3 exp ( 4 Δ τ 2 π Δ τ 2 )
D PMD = Δ τ L

Metrics