Abstract

Bend loss characterisation tests are carried out in two air-silica structured fibres: a periodic photonic crystal fibre and a non-periodic fibre. An explanation based on resonant coupling between interstitial zones accounts for the improved confinement of non-periodic structured optical fibres.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)
  2. A. Yariv and M. Nakamura, “Periodic structures for integrated-optics,” IEEE J. Quantum Electron. 13, 233–253 (1977)
    [CrossRef]
  3. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196- (1978) http://www.opticsinfobase.org/abstract.cfm?URI=josa-68-9-1196
    [CrossRef]
  4. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Physics Review Letters 58, 2059–2062 (1987)
    [CrossRef]
  5. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Dordrecht, 2003)
  6. M. Kristensen, J. Canning, and T. Ryan, “Mode-coupling in photonic crystal fibres with multiple cores”, Conference on Laser and Electro-Optics (CLEO/Europe 2000), Nice, France, (2000)
  7. C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
    [CrossRef]
  8. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080
    [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
    [CrossRef]
  10. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236
    [CrossRef] [PubMed]
  11. T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
    [CrossRef]
  12. J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
    [CrossRef]
  13. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15, 2468–2475 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2468
    [CrossRef] [PubMed]
  14. I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)
  15. D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12, 3465–3470 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3465
    [CrossRef] [PubMed]
  16. J. Canning, “Diffraction-Free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun. 207, 35–39 (2002)
    [CrossRef]
  17. M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
    [CrossRef]
  18. D. Donlagic and B. Culshaw, “Low-loss transmission through tightly bent standar telecommunication fibers,” Appl. Phys. Lett 77, 3911–3913 (2000)
    [CrossRef]
  19. Corning Incorporated, “Corning® HI 1060 FLEX speciality fiber – ultra-low bending loss in C- and Lbands,” information data sheet (2003)

2007 (2)

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15, 2468–2475 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2468
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2003 (1)

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

2002 (2)

J. Canning, “Diffraction-Free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun. 207, 35–39 (2002)
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

2001 (1)

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

2000 (1)

D. Donlagic and B. Culshaw, “Low-loss transmission through tightly bent standar telecommunication fibers,” Appl. Phys. Lett 77, 3911–3913 (2000)
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Physics Review Letters 58, 2059–2062 (1987)
[CrossRef]

1978 (1)

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated-optics,” IEEE J. Quantum Electron. 13, 233–253 (1977)
[CrossRef]

1973 (1)

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

Baggett, J.C.

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

Birks, T.

Bjarklev, A.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Dordrecht, 2003)

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Dordrecht, 2003)

Broeng, J.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Dordrecht, 2003)

Canning, J.

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15, 2468–2475 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2468
[CrossRef] [PubMed]

D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12, 3465–3470 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3465
[CrossRef] [PubMed]

J. Canning, “Diffraction-Free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun. 207, 35–39 (2002)
[CrossRef]

M. Kristensen, J. Canning, and T. Ryan, “Mode-coupling in photonic crystal fibres with multiple cores”, Conference on Laser and Electro-Optics (CLEO/Europe 2000), Nice, France, (2000)

Canning, K.

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Couny, F.

Culshaw, B.

D. Donlagic and B. Culshaw, “Low-loss transmission through tightly bent standar telecommunication fibers,” Appl. Phys. Lett 77, 3911–3913 (2000)
[CrossRef]

Digweed-Lyytikäinen, K.

Donlagic, D.

D. Donlagic and B. Culshaw, “Low-loss transmission through tightly bent standar telecommunication fibers,” Appl. Phys. Lett 77, 3911–3913 (2000)
[CrossRef]

Farr, L.

Finazzi, V.

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

Furusawa, K.

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

Gibson, B. C.

Groothoff, N.

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

Hansen, T.

Honda, K.

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Huntington, S. T.

Issa, N.

Kácik, D.

Kácik, I.

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Kaiser, P.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)

Kirihara, S.

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Knight, J.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

Knudsen, E.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

Kristensen, M.

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

M. Kristensen, J. Canning, and T. Ryan, “Mode-coupling in photonic crystal fibres with multiple cores”, Conference on Laser and Electro-Optics (CLEO/Europe 2000), Nice, France, (2000)

Libori, S. E. B.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

Love, J. D.

Ludvigsen, H.

Lyytikäinen,

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Lyytikäinen, K.

Mangan, B.

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)

Marom, E.

Martelli, C.

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

Martincek, I.

Martincek, J.

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Mason, M.

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)

Miyamoto, Y.

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Monro, T.M.

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated-optics,” IEEE J. Quantum Electron. 13, 233–253 (1977)
[CrossRef]

Petersen, J.

Richardson, D.J.

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

Ritari, T.

Roberts, P.

Russel, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

Russell, P. St. J.

Ryan, T.

M. Kristensen, J. Canning, and T. Ryan, “Mode-coupling in photonic crystal fibres with multiple cores”, Conference on Laser and Electro-Optics (CLEO/Europe 2000), Nice, France, (2000)

Sabert, H.

Sakoda, K.

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Simonsen, H.

Sørensen, T.

Steblina, V.

Takeda, M. W.

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Tomlinson, A.

Tuominen, J.

Turek, I.

D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12, 3465–3470 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3465
[CrossRef] [PubMed]

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Williams, D.

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Physics Review Letters 58, 2059–2062 (1987)
[CrossRef]

Yariv, A.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196- (1978) http://www.opticsinfobase.org/abstract.cfm?URI=josa-68-9-1196
[CrossRef]

A. Yariv and M. Nakamura, “Periodic structures for integrated-optics,” IEEE J. Quantum Electron. 13, 233–253 (1977)
[CrossRef]

Yeh, P.

Appl. Phys. Lett (1)

D. Donlagic and B. Culshaw, “Low-loss transmission through tightly bent standar telecommunication fibers,” Appl. Phys. Lett 77, 3911–3913 (2000)
[CrossRef]

B.S.T.J. (1)

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” B.S.T.J. 52, 265–269 (1973)

Electron. Lett. (1)

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37, 287–289 (2001)
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated-optics,” IEEE J. Quantum Electron. 13, 233–253 (1977)
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D.J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003)
[CrossRef]

J. Canning, “Diffraction-Free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun. 207, 35–39 (2002)
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (1)

M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional fractal cavities,” Phys. Rev. Lett. 92, 093902-1–093902-4 (2004)
[CrossRef]

Physics Review Letters (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Physics Review Letters 58, 2059–2062 (1987)
[CrossRef]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 11, 399–402 (2002)
[CrossRef]

Sensors (1)

C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction”, Sensors 7, 2492–2498 (2007)
[CrossRef]

Other (4)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Dordrecht, 2003)

M. Kristensen, J. Canning, and T. Ryan, “Mode-coupling in photonic crystal fibres with multiple cores”, Conference on Laser and Electro-Optics (CLEO/Europe 2000), Nice, France, (2000)

Corning Incorporated, “Corning® HI 1060 FLEX speciality fiber – ultra-low bending loss in C- and Lbands,” information data sheet (2003)

I. Kácik, I. Turek, J. Martincek, K. Canning, and Lyytikäinen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” Australian Conference on Optical Fibre Technology (ACOFT 2005), Sydney, Australia, (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) Schematic representation of the experimental setup employed to characterize the short wavelength cut-off due to bend loss in air-silica structured fibres. b) Images of the air-silica structured fibres cross-sections used in the experiments.

Fig. 2.
Fig. 2.

a) PCF fibre bend loss measurements for five different radii and b) Bragg shift of the resonant band as function of bend radius.

Fig. 3.
Fig. 3.

Bend loss at 1550 nm for various bend lengths.

Fig. 4.
Fig. 4.

Fractal fibre bend loss for five different radii and b) bend loss at 1550 nm for various bend lengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ m ( a + R ) ( a 2 + 2 a R ) 1 2

Metrics