Abstract

The long interaction pathlengths provided by hollow-core photonic bandgap fibers (HC-PBFs) are especially advantageous for the detection of weakly absorbing gases such as methane (CH4). In this paper, we demonstrate methane sensing with a 1670-nm band HC-PBF. A multiline algorithm is used to fit the R(6) manifold (near 1645 nm) and, in this way, to measure the gas concentration. With this method, a minimum detectivity of 10 ppmv for the system configuration was estimated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley & Sons New York, 2002).
  2. T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
    [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
    [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  6. L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A .K. George, J. C. Knight, D. P. Hand, and D. T. Reid, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Express 15, 11219-11224 (2007).
    [CrossRef] [PubMed]
  7. A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. Petrovich, and J. M. Lopez-Higuera, High sensitive methane sensor based on a photonic bandgap fiber, Postdeadline EWOFS’07 (2007).
  8. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
    [CrossRef] [PubMed]
  9. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006).
    [CrossRef] [PubMed]
  10. J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
    [CrossRef]
  11. F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
    [CrossRef]
  12. B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
    [CrossRef]
  13. M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005).
    [CrossRef]
  14. L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  15. V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997).
    [CrossRef]
  16. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
    [CrossRef]

2007 (1)

2006 (3)

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006).
[CrossRef] [PubMed]

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
[CrossRef] [PubMed]

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

2005 (4)

M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005).
[CrossRef]

L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
[CrossRef] [PubMed]

2004 (1)

2001 (1)

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1998 (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

1997 (1)

V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997).
[CrossRef]

1995 (1)

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Baer, D. S.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

Benabid, F.

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
[CrossRef] [PubMed]

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Buckley, S. G.

M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005).
[CrossRef]

Corwin, K. L.

Couny, F.

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Culshaw, B.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Dong, F.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Faheem, M.

Gayraud, N.

George, A. K.

Gharavi, M.

M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005).
[CrossRef]

Hald, J.

Hand, D. P.

Hansen, T. P.

Hanson, R. K.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997).
[CrossRef]

Henningsen, J.

Ikeda, Y.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

Kim, S.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

Knabe, K.

Knight, J. C.

Kornaszewski, L.W.

Light, P. S.

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

Ludvigsen, H.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

MacPherson, W. N.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Moodie, D.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Nagali, V.

V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997).
[CrossRef]

Naweed, A.

Petersen, J. C.

Reid, D. T.

Ritari, T.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Rothman, L. S.

L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Russel, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Russell, P. St. J.

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

Sanders, S. T.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

Sheperd, T. J.

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

Simonsen, H. R.

Sorensen, T.

Stewart, G.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Stone, J. M.

Tandy, C.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Thapa, R.

Tuominen, J.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

Weaver, O. L.

Webber, M. E.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

App. Opt. (2)

V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997).
[CrossRef]

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995).
[CrossRef]

J. Mol. Spectrosc. (1)

M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Opt. Commun. (2)

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
[CrossRef] [PubMed]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sens. Act. B (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998).
[CrossRef]

Other (2)

J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley & Sons New York, 2002).

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. Petrovich, and J. M. Lopez-Higuera, High sensitive methane sensor based on a photonic bandgap fiber, Postdeadline EWOFS’07 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalized spectral transmission of the HC-PBF used in the experiments. Shown in the inner panel is a microscope image of the fiber.

Fig. 2.
Fig. 2.

Experimental setup for the detection of methane with a HC-PBF.

Fig. 3.
Fig. 3.

Transmission spectrum of methane measured at room temperature and a relative pressure of 1 bar with a methane concentration of 18750 ppmv in air. The scanned resolution was 0.025 nm from 1625 nm to 1680 nm. P, Q and R branches are labelled. R(6) absorption line is also indicated.

Fig. 4.
Fig. 4.

6-Line best Lorentzian fit (solid curve) for R(6) manifold near 6077 cm-1 at T=296K, relative pressure of 1 bar and methane concentration of 18750 ppmv (upper). Dots representing the experimental points and broken lines the contributions of each of the six transitions of the R(6) absorption line. The residual (bottom) is calculated as the difference between the data (dots) and the multiline best-fit Lorentzian profile (solid curve).

Fig. 5.
Fig. 5.

Concentration measurements of methane estimated with the 6-line fit algorithm. Dots representing the experimental points and solid curve the calibrated methane concentration.

Fig. 6.
Fig. 6.

6-Line best Lorentzian fit for the R(6) manifold near 6077 cm-1 at T=296K, relative pressure of 1 bar and methane concentration of 750 ppmv (upper) and residual (bottom) used for the determination of the detection limit of the system.

Tables (1)

Tables Icon

Table 1. Individual transitions of the R(6) manifold a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ν = ln ( I t I o ) = k ν · L
k ν = i = 1 N P x S i ϕ i ( ν ν 0 i )
A ν = P L x i = 1 6 S i ϕ i ( Δ ν C i , ν ν 0 i )
ν 0 i = ν 0 + δ ν i
A ν = P L x i = 1 6 S t o t ω i ϕ i ( Δ ν C , ν ν 0 i )

Metrics