Abstract

High-order dispersion in the slow-light regime of photonic crystal (PhC) waveguides was measured by utilizing integrated Mach-Zehnder interferometer (MZI) structures, and compared with theoretical results obtained from 3D plane-wave calculations. Highly accurate measurements of group-velocity dispersion (GVD), third-order dispersion (TOD) and fourth-order dispersion (FOD) at high group-index (ng) values were enabled by minimizing external phase-distortions and increasing signal-to-noise ratio in the MZI. The experimental results for GVD, TOD, and FOD parameters at ng~100 were ~102ps2/mm, ~104ps3/mm, and ~105ps3/mm respectively. The results emphasize the importance of taking into consideration the effect of TOD and FOD on pulse broadening in the slow-light regime.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. Lee, and A. Sherer, "Coupled-resonator optical waveguides: a proposal and analysis," Opt. Lett. 24, 711 (1999),http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-11-711.
    [CrossRef]
  2. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7145.
    [CrossRef] [PubMed]
  3. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
    [CrossRef] [PubMed]
  4. Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  5. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2006),http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-1-219.
    [CrossRef]
  6. Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
    [CrossRef]
  7. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9398.
    [CrossRef] [PubMed]
  8. L. A. Frandesen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444.
    [CrossRef]
  9. S. -C. Huang, M. Kato, E. Kuramochi, C. -P, Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light in photonic crystal coupled waveguides," Opt. Express 15, 3543 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543.
    [CrossRef] [PubMed]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ideda, N.F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1658.
    [CrossRef] [PubMed]
  11. S. McNab, N. Moll and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927.
    [CrossRef] [PubMed]
  12. Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622.
    [CrossRef] [PubMed]
  13. L. Sekaric, S. J. McNab, Y. A. Vlasov, "Y-splitters in photonic wires and photonic crystal waveguides," VI Symposium on Photonic and Electromagnetic Crystal Structures, Crete, June 19-24, 2005, available at http://www.research.ibm.com/photonics/posters/splittters_pecsvi.pdf
  14. E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
    [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
    [CrossRef] [PubMed]

2007 (1)

2006 (4)

2005 (4)

E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9398.
[CrossRef] [PubMed]

M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7145.
[CrossRef] [PubMed]

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

2004 (2)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622.
[CrossRef] [PubMed]

2003 (1)

2001 (1)

1999 (1)

Asakawa, K.

Baba, T.

Borel, P. I.

Dulkeith, E.

E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Fan, S.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Frandesen, L. A.

Hamann, H. F.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Hasama, T.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Huang, S. -C.

Ideda, N.

Ikeda, N.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Ishikawa, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

Kato, M.

Kawashima, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Korterik, J.P.

Krauss, T. F.

Kuipers, L.

Kuramochi, E.

Kuwatsuka, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Lavrinenko, A. V.

Lee, R.

McNab, S.

McNab, S. J.

E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Michaeli, A.

Moll, N.

Mori, D.

O’Boyle, M.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Povinelli, M.

Salib, M.

Settle, M. D.

Sherer, A.

Sugimoto, Y.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ideda, N.F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1658.
[CrossRef] [PubMed]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

van Hulst, N.F.

Vlasov, Y.

Vlasov, Y. A.

E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Vlasov, Yu. A.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Watanabe, Y.

Xu, Y.

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Yariv, A.

Appl. Phys. Lett. (1)

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006).
[CrossRef]

Nature (1)

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Opt. Express (9)

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2006),http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-1-219.
[CrossRef]

M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7145.
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
[CrossRef] [PubMed]

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9398.
[CrossRef] [PubMed]

L. A. Frandesen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444.
[CrossRef]

S. -C. Huang, M. Kato, E. Kuramochi, C. -P, Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light in photonic crystal coupled waveguides," Opt. Express 15, 3543 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543.
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ideda, N.F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1658.
[CrossRef] [PubMed]

S. McNab, N. Moll and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927.
[CrossRef] [PubMed]

Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622.
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004)
[CrossRef] [PubMed]

Other (1)

L. Sekaric, S. J. McNab, Y. A. Vlasov, "Y-splitters in photonic wires and photonic crystal waveguides," VI Symposium on Photonic and Electromagnetic Crystal Structures, Crete, June 19-24, 2005, available at http://www.research.ibm.com/photonics/posters/splittters_pecsvi.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM image of a) an integrated MZI illustrating the input/output Y-splitters and a 10µm long W1 PhC waveguide in one arm, b) the input Y-splitter of an MZI structure with 250µm long PhC waveguide.

Fig. 2.
Fig. 2.

The red spectrum is the transmission through a 250µm long W1 PhC waveguide. The black spectrum indicates the MZI transmission measured at 2nm resolution, while the dense blue spectrum was measured at 0.06nm resolution. The inset shows the interference fringes measured from 1560nm to 1565nm at 0.06nm resolution in order to distinguish the fringe maxima and minima close to the even guide-mode on-set.

Fig. 3.
Fig. 3.

The blue, red, and green filled circles show the experimental group index for r/a=0.25, 0.30, and 0.35 respectively. The solid lines show the theoretical group-index values calculated with 3D plane-wave method following the fitting procedure described in the text.

Fig. 4.
Fig. 4.

a) Group-velocity dispersion (GVD). b) Third-order dispersion (TOD). c) Fourth-order dispersion (FOD). The blue, red, and green filled circles indicate experimental data for r/a=0.25, 0.30, and 0.35 respectively. The solid lines show best fit to experimental data according to fitting procedure described in the text.

Metrics