Abstract

Picosecond pulses at 1.56µmm wavelength are directly amplified with a diffraction limited beam quality in a core-pumped Er fiber with an 875µm2 effective area. The interplay between nonlinear spectral broadening and anomalous fiber dispersion compresses the input pulse duration during amplification so that 42 nJ energy pulses with ~65 kW peak power are achieved without pulse break-up.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers – Technology and Applications (Marcel Dekker, New York, 2003).
  2. J. W. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High Power, Single Mode, All-Fiber Source of Femtosecond Pulses at 1550 nm and its Use in Supercontinuum Generation,” Opt. Express 12, 3025–3034 (2004).
    [Crossref] [PubMed]
  3. G. Lin, Y. Lin, and C. Lee, “Simultaneous Pulse Amplification and Compression in All-Fiber-Integrated Pre-Chirped Large-Mode-Area Er-Doped Fiber Amplifier,” Opt. Express 15, 2993–2999 (2007).
    [Crossref] [PubMed]
  4. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-Nonlinearity Single -Transverse-Mode Ytterbium-Doped Photonic Crystal Fiber Amplifier,” Opt. Express 12, 1313–1319 (2004).
    [Crossref] [PubMed]
  5. L. Dong, J. Li, and X. Peng, “Bend-Resistant Fundamental Mode Operation in Ytterbium-Doped Leakage Channel Fibers with Effective Areas Upto 3160 µm2,” Opt. Express 14, 11512–11519 (2006).
    [Crossref] [PubMed]
  6. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
    [Crossref] [PubMed]
  7. G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chap. (5) Optical Solitons, (11) Fiber Amplifiers.
  8. K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).
  9. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, “Large-Mode-Area Erbium-Ytterbium-Doped Photonic-Crystal Fiber Amplifier for High-Energy Femtosecond Pulses at 1.55µm,” Opt. Express 13, 1221–1227 (2005).
    [Crossref] [PubMed]
  10. J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, “Optically Driven Deposition of Single-Walled Carbon-Nanotube Saturable Absorbers on Optical Fiber End-Faces,” Opt. Express 15, 9176–9183 (2007).
    [Crossref] [PubMed]
  11. J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
    [Crossref] [PubMed]
  12. M. E. Fermann, “Single-Mode Excitation of Multimode Fibers with Ultrashort Pulses,” Optics Letters 23, 52–54 (1998).
    [Crossref]
  13. J. M. Fini, “Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area,” Optics Express 14, 69–81 (2006).
    [Crossref] [PubMed]
  14. P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in optical fibers,” Opt. Lett. 15, 1076–1078 (1990).
    [Crossref] [PubMed]
  15. G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991).
    [Crossref] [PubMed]
  16. C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” Journal of Lightwave Technology 9, 271–283 (1991).
    [Crossref]

2007 (3)

2006 (3)

L. Dong, J. Li, and X. Peng, “Bend-Resistant Fundamental Mode Operation in Ytterbium-Doped Leakage Channel Fibers with Effective Areas Upto 3160 µm2,” Opt. Express 14, 11512–11519 (2006).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

J. M. Fini, “Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area,” Optics Express 14, 69–81 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

1998 (1)

M. E. Fermann, “Single-Mode Excitation of Multimode Fibers with Ultrashort Pulses,” Optics Letters 23, 52–54 (1998).
[Crossref]

1991 (2)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991).
[Crossref] [PubMed]

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” Journal of Lightwave Technology 9, 271–283 (1991).
[Crossref]

1990 (1)

1988 (1)

K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).

Agrawal, G. P.

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991).
[Crossref] [PubMed]

G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chap. (5) Optical Solitons, (11) Fiber Amplifiers.

Andrejco, M. J.

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

Blow, K. J.

K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).

Broeng, J.

Chernikov, S. V.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” Journal of Lightwave Technology 9, 271–283 (1991).
[Crossref]

DiGiovanni, D.

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

DiGiovanni, D. J.

Dimarcello, F. V.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Dong, L.

Doran, N. J.

K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).

Feder, K.

Fermann, M. E.

M. E. Fermann, “Single-Mode Excitation of Multimode Fibers with Ultrashort Pulses,” Optics Letters 23, 52–54 (1998).
[Crossref]

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers – Technology and Applications (Marcel Dekker, New York, 2003).

Fini, J. M.

J. M. Fini, “Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area,” Optics Express 14, 69–81 (2006).
[Crossref] [PubMed]

Folkenberg, J. R.

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers – Technology and Applications (Marcel Dekker, New York, 2003).

Ghalmi, S.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” Journal of Lightwave Technology 9, 271–283 (1991).
[Crossref]

Headley, C.

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

Jakobsen, C.

Jasapara, J.

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

Lee, C.

Li, J.

Liem, A.

Limpert, J.

Lin, G.

Lin, Y.

Mamyshev, P. V.

Monberg, E.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Musha, M.

Nakagawa, K.

Nicholson, J. W.

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, “Optically Driven Deposition of Single-Walled Carbon-Nanotube Saturable Absorbers on Optical Fiber End-Faces,” Opt. Express 15, 9176–9183 (2007).
[Crossref] [PubMed]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

J. W. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High Power, Single Mode, All-Fiber Source of Femtosecond Pulses at 1550 nm and its Use in Supercontinuum Generation,” Opt. Express 12, 3025–3034 (2004).
[Crossref] [PubMed]

Nolte, S.

Ota, J.

Peng, X.

Petersson, A.

Ramachandran, S.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Reich, M.

Schreiber, T.

Shirakawa, A.

Sucha, G.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers – Technology and Applications (Marcel Dekker, New York, 2003).

Tünnermann, A.

Ueda, K.

Westbrook, P.

Windeler, R. S.

Wisk, P.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Wood, D.

K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).

Yablon, A.

Yablon, A. D.

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

Yan, M.

Yan, M. F.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

Zellmer, H.

J. O p t. S o c. A m. B (1)

K. J. Blow, N. J. Doran, and D. Wood, “Generation and Stabilization of Short Soliton Pulses in the Amplified Nonlinear Schrödinger Equation,” J. O p t. S o c. A m. B 5, 381–390 (1988).

Journal of Lightwave Technology (1)

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” Journal of Lightwave Technology 9, 271–283 (1991).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optics Express (1)

J. M. Fini, “Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area,” Optics Express 14, 69–81 (2006).
[Crossref] [PubMed]

Optics Letters (3)

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light Propagation with Ultralarge Modal Areas in Optical Fibers,” Optics Letters 31, 1797–1799 (2006).
[Crossref] [PubMed]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond Pulse Amplification in a Core Pumped Large-Mode-Area ErbiumFiber,” Optics Letters 32, 2429–2431 (2007).
[Crossref] [PubMed]

M. E. Fermann, “Single-Mode Excitation of Multimode Fibers with Ultrashort Pulses,” Optics Letters 23, 52–54 (1998).
[Crossref]

Phys. Rev. A (1)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991).
[Crossref] [PubMed]

Other (2)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers – Technology and Applications (Marcel Dekker, New York, 2003).

G. P. Agrawal, in Nonlinear Fiber Optics (Academic Press, 1995), Chap. (5) Optical Solitons, (11) Fiber Amplifiers.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of picosecond modelocked laser and amplifier system. Laser is followed by a single mode (SM) Er amplifier and the booster amplifier comprising the LMA Er fiber. PC: Polarization controller; FC/APC: fiber connector.

Fig. 2.
Fig. 2.

(a) Average power and pulse energy versus 1480 nm pump power, and (b) decrease in autocorrelation FWHM with pulse energy, for various LMA Er lengths.

Fig. 3.
Fig. 3.

(a)&(b), (c)&(d), and (e)&(f): Spectra, and intensity autocorrelation pairs, recorded for LMA Er lengths of L3 =3.9 m, L2 =2.8 m, and L1 =2.3 m respectively. For L3 the dramatic change in autocorrelations with pulse energies are shown in (b). For lengths L2 and L1 the autocorrelations recorded (solid line) at the highest pulse energies and the simulated (crosses) autocorrelation assuming a Sech shaped pulse of duration 648 fs and 683 fs respectively are shown in (d) and (f).

Fig. 4.
Fig. 4.

Simulation results for amplifier length L3 =3.9 m. (a) Calculated pulse shape evolution as a function of output pulse energy. (b) Evolution of pulse energy and duration along the amplifier length when the output pulse energy is 26.9 nJ (squares) and 38.5 nJ (circles).

Tables (1)

Tables Icon

Table 1. Parameter list used for modeling pulse amplification in the LMA Er fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) z = g ( z , ω ) 2 E gain i 2 [ β 2 + i g ( z , ω 0 ) T 2 2 gain disp . ] 2 E t 2 GDD + i γ [ E 2 E + i ω 0 t ( E 2 E ) self steepening T R E E 2 t SRS ] nonlinearity ,
T R f R 0 t τ 1 2 + τ 2 2 τ 1 τ 2 2 sin ( t τ 1 ) exp ( t τ 2 ) d t .
N 2 = C Er 3 + ( k Γ k σ ak τ h f k R eff 2 π P k ) ( 1 + k Γ k ( σ ak + σ ek ) τ h f k R eff 2 π P k ) ,
d P k d z = Γ k ( σ ak + σ ek ) N 2 P k ( Γ k σ ak C Er 3 + + α k ) P k
d P k d z = Γ k ( σ ak + σ ek ) N 2 P k + Γ k σ ek N 2 m h f k Δ f k ( Γ k σ ak C Er 3 + + α k ) P k
g ( z , f k ) = ln ( P k ( z + Δ z ) P k ( z ) ) Δ z ,

Metrics