Abstract

The dispersion relations of the surface plasmon modes of metal nanoparticle chains are measured, and compared with theory. The theoretical model includes the effects of retardation, radiative damping and dynamic depolarization due to the finite size of the nanoparticles. The results reveal that, in addition to one longitudinal and one transverse mode, there is a third mode, which has not been previously reported.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-7 (1997).
    [CrossRef] [PubMed]
  3. M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  4. M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
    [CrossRef]
  5. S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
    [CrossRef]
  6. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
    [CrossRef] [PubMed]
  7. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006).
    [CrossRef]
  8. V. A. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt. 40, 2281-2291 (1993).
    [CrossRef]
  9. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
    [CrossRef]
  10. M. Guillon, "Field enhancement in a chain of optically bound dipoles," Opt. Express 14, 3045-3055 (2006).
    [CrossRef] [PubMed]
  11. S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
    [CrossRef] [PubMed]
  12. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
    [CrossRef]
  13. R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
    [CrossRef]
  14. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
    [CrossRef]
  15. K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  16. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
    [CrossRef]
  17. E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
    [CrossRef]
  18. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006).
    [CrossRef] [PubMed]
  19. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
    [CrossRef]
  20. C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
    [CrossRef] [PubMed]
  21. S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004).
    [CrossRef]
  22. W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  23. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
    [CrossRef]
  24. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
    [CrossRef]
  25. K. B. Crozier and E. Togan, "Experimental measurement of the dispersion relations of metal nanoparticle chains," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America 2007) paper QThB4. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2007-QThB4
  26. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
    [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. FDTD software is FullWave from RSoft Design Group, Ossining, New York.
  29. A. D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  30. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).
  31. A. Stratton, Electromagnetic Theory, (McGraw Hill, 1941).

2006 (4)

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006).
[CrossRef]

M. Guillon, "Field enhancement in a chain of optically bound dipoles," Opt. Express 14, 3045-3055 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006).
[CrossRef] [PubMed]

2005 (3)

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
[CrossRef]

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

2004 (7)

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004).
[CrossRef]

W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
[CrossRef] [PubMed]

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
[CrossRef]

2003 (3)

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

2002 (3)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

2000 (1)

M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
[CrossRef]

1998 (2)

1997 (1)

1993 (1)

V. A. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt. 40, 2281-2291 (1993).
[CrossRef]

Alivisatos, A. P.

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Anzai, Y.

Atwater, H. A.

S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
[CrossRef]

Aussenegg, F. R.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
[CrossRef]

Brongersma, M. L

M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

Burin, A. L.

Cao, H.

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Dereux, A.

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

Djurisic, A. B.

Durant, S.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Elazar, J. M.

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Ford, G. W.

W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

Girard, C.

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
[CrossRef] [PubMed]

Guillon, M.

Hartman, J. W.

M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Kobayashi, T.

Koenderink, A. F.

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

Krenn, J. R.

Leitner, A.

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
[CrossRef]

Liphard, J.

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Majewski, M. L.

Markel, V. A.

V. A. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt. 40, 2281-2291 (1993).
[CrossRef]

Matsumoto, T.

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

Morimoto, A.

Nakamura, K.

Nishida, T.

Park, S. Y.

S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004).
[CrossRef]

Polman, A.

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Quidant, R.

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
[CrossRef] [PubMed]

Quinten, M.

Rakic, A. D.

Ratner, M. A.

Reinhard, B. M.

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Schatz, G. C

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

Schatz, G. C.

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
[CrossRef]

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

Shintani, T.

Simovski, C. R.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
[CrossRef]

Stroud, D.

S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004).
[CrossRef]

Su, K. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Takahara, J.

Taki, H.

Tretyakov, S. A.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
[CrossRef]

Viitanen, A. J.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
[CrossRef]

Weber, W. H

W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Weeber, J. C.

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

Wei, Q. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Yamagishi, S.

Zhang, X.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

V. A. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt. 40, 2281-2291 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B. (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003).
[CrossRef]

J. Phys.: Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002).
[CrossRef]

Nano Lett. (1)

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Nat. Biotechnol. (1)

C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (7)

M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000).
[CrossRef]

A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006).
[CrossRef]

S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004).
[CrossRef]

W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005).
[CrossRef]

R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004).
[CrossRef]

Phys. Rev. E (1)

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003).
[CrossRef]

Other (6)

K. B. Crozier and E. Togan, "Experimental measurement of the dispersion relations of metal nanoparticle chains," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America 2007) paper QThB4. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2007-QThB4

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

FDTD software is FullWave from RSoft Design Group, Ossining, New York.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).

A. Stratton, Electromagnetic Theory, (McGraw Hill, 1941).

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a). and (b). Scanning electron micrographs (SEMs) of gold nanoparticle chains. Nanoparticle spacing along chain is 140 nm. Adjacent chains are spaced by 300 nm. Nanoparticle diameter is 92 nm. Gold thickness is 55 nm.

Fig. 2.
Fig. 2.

(color online) Experimental set-up used for transmission spectroscopy of metal nanoparticle chains with the angle of incidence varied.

Fig. 3.
Fig. 3.

(color online) Transmission vs wavelength of gold nanoparticle chain arrays. The angle of incidence is varied from 0° to 75°, in steps of 5°. The spectra are vertically offset for clarity. a). S-polarization, exciting transverse mode T1. b). P-polarization, exciting longitudinal mode L and transverse mode T2.

Fig. 4.
Fig. 4.

(color online) Orientation of dipole moments of metal nanoparticles in longitudinal and transverse modes

Fig. 5.
Fig. 5.

(color online) Cross sectional view of FDTD simulation domain, consisting of unit cell that encloses a single gold nanoparticle on a glass substrate. P-polarized plane wave illumination is employed.

Fig. 6.
Fig. 6.

(color online) Transmission spectra of gold nanoparticle array: FDTD simulation and experiment. P-polarized illumination is used, from the glass side at θinc, glass =35° from the normal to the glass-air interface.

Fig. 7.
Fig. 7.

Internal instantaneous electric field on cross section through gold nanoparticle (yz plane, x=0) illuminated at λ0=613.5 nm. Illumination is p-polarized plane wave (amplitude 1 V/m), incident from the glass side at θinc, glass =35° from the normal to the glass-air interface. Instantaneous electric field at time a). t=0, b). t=T/8, c). t=T/4, d). t=3T/8 and e). t=T/2, where T=period.

Fig. 8.
Fig. 8.

Internal instantaneous electric field on cross section through gold nanoparticle (yz plane, x=0) illuminated at λ0=512.8 nm. Illumination is p-polarized plane wave (amplitude 1 V/m), incident from the glass side at θinc, glass =35° from the normal to the glass-air interface. Instantaneous electric field at time a). t=0, b). t=T/8, c). t=T/4, d). t=3T/8 and e). t=T/2, where T=period.

Fig. 9.
Fig. 9.

(color online) Surface plasmon dispersion relationship of metal nanoparticle chains. Theoretical curves are based on a fully-retarded model for the cases of nanoparticles in air, and nanoparticles in a homogeneous glass medium. a). Longitudinal (L) and first transverse (T1) modes: theory and experiment. b). Second transverse mode (T2): theory

Fig. 10.
Fig. 10.

(color online) P-polarized transmission spectra, with angle of incidence ranging from 60° to 75°, in steps of 5°. Spectra are vertically offset for clarify. Orange symbols: theoretical positions of T2 mode for nanoparticles in air. Purple symbols: theoretical positions of T2 mode for nanoparticles in glass.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k in plane = ω c sin θ
α 0 , x = ε r ε b ε b + L x ( ε r ε b ) abc 3
L x = abc 2 s = 0 1 s + a 2 ( ( s + a 2 ) ( s + b 2 ) ( s + c 2 ) ) 1 2 d s
α = ( 1 α 0 i 2 3 k 3 k 2 a ) 1
E ( p , r , ω ) = 1 4 π ω [ ( 1 i ω r v ) 3 ( r ̂ · p ) r ̂ p r 3 + ω 2 v 2 p ( r ̂ · p ) r ̂ r ] × e i ω r v i ω t

Metrics