Abstract

This article overviews our recent studies of ultrahigh-Q and ultrasmall photonic-crystal cavities, and their applications to nonlinear optical processing and novel adiabatic control of light. First, we show our latest achievements of ultrahigh-Q photonic-crystal nanocavities, and present extreme slow-light demonstration. Next, we show all-optical bistable switching and memory operations based on enhanced optical nonlinearity in these nanocavities with extremely low power, and discuss their applicability for realizing chip-scale all-optical logic, such as flip-flop. Finally, we introduce adiabatic tuning of high-Q nanocavities, which leads to novel wavelength conversion and another type of optical memories.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  3. B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
    [CrossRef]
  4. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
    [CrossRef]
  5. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  6. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
    [CrossRef]
  7. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
    [CrossRef] [PubMed]
  8. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  10. H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
    [CrossRef]
  11. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506
    [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
    [CrossRef] [PubMed]
  13. J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
    [CrossRef]
  14. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670
    [PubMed]
  15. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
    [CrossRef] [PubMed]
  16. K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
    [CrossRef]
  17. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
    [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
    [CrossRef]
  19. S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
    [CrossRef]
  20. H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
    [CrossRef]
  21. M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
    [CrossRef] [PubMed]
  22. H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  23. G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
    [CrossRef] [PubMed]
  24. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
    [CrossRef]
  25. T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007).
    [CrossRef]
  26. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  27. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543
    [CrossRef] [PubMed]
  28. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, " Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).
  30. E. Kuramochi, M. Notomi, S. Hughes, L. Ramunno, G. Kira, S. Mitsugi, A. Shinya, and T. Watanabe, "Scattering loss of photonic crystal waveguides and nanocavities induced by structural disorder," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CTuE1-1, 2005. (pp. 10-11)
  31. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual Meeting of IEEE LEOS (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 214-215.
  32. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein.
    [CrossRef] [PubMed]
  33. H. M. Gibbs, Optical bistability: controlling light with light. (Academic Press, Orlando, 1985).
  34. K. Asakawa, et al. "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
    [CrossRef]
  35. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
    [CrossRef] [PubMed]
  36. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
    [CrossRef]
  37. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004).
    [CrossRef] [PubMed]
  38. P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).
  39. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  40. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
    [CrossRef] [PubMed]
  41. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  42. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  43. S. D. Smith, "Optical bistability, photonic logic, and optical computation," Appl. Opt. 25, 1550-1564 (1986).
    [CrossRef] [PubMed]
  44. H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990).
    [CrossRef]
  45. S. Mitsugi, A. Shinya, T. Tanabe, M. Notomi, and I. Yokohama, "Design and FDTD analysis of micro photonic flip-flop based on 2D photonic crystal slab," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 30p-YV-11, p.1197, Mar. 30, 2005.
  46. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  47. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
    [CrossRef] [PubMed]
  48. M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  49. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  50. B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
    [CrossRef]
  51. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).
  52. M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
    [CrossRef] [PubMed]
  53. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
    [CrossRef]
  54. M. Notomi, T. Tanabe, A. Shinya, S. Mitsugi, E. Kuramochi, and M. Morita, "Dynamic nonlinear control of resonator-waveguide coupled system in photonic crystals," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CWe4-1, 2005. (pp. 1020-1021).
  55. M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 31p-YV-15, p.1208, Mar. 30, 2005.
  56. M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system (2)," in Extended abstracts of the 66th autumn meeting of the Japan Society of Applied Physics, 9p-H-11, p.924, Sept. 9, 2005.
  57. H. A. Haus, Waves and fields in optoelectronics (Prince-Hall, New Jersey, 1984).
  58. M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  59. Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
    [CrossRef]
  60. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
    [CrossRef] [PubMed]

2007 (13)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007).
[CrossRef]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
[CrossRef]

Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

2006 (6)

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

K. Asakawa, et al. "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
[CrossRef]

R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

2005 (6)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

2004 (9)

G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004).
[CrossRef] [PubMed]

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein.
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

2003 (5)

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
[CrossRef]

2002 (6)

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670
[PubMed]

2001 (2)

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999 (1)

1990 (1)

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990).
[CrossRef]

1987 (1)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1986 (1)

1984 (1)

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Akahane, Y.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Almeida, V.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

Almeida, V. R.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Asakawa, K.

K. Asakawa, et al. "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506
[CrossRef] [PubMed]

T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007).
[CrossRef]

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Barrios, C.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

Bret, B.P.J.

B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
[CrossRef]

Dong, P.

Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
[CrossRef]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

Forchel, A.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
[CrossRef]

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Gibbs, H. M.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hein, T.

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Herrmann, R.

Hijmans, T. W.

B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Huang, S. C.

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

Hwang, J-K.

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Inoshita, K.

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Joannopoulos, J.D.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein.
[CrossRef] [PubMed]

Johnson, P. M.

P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Johnson, S.G.

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Kamp, M.

Kato, M.

Kawanishi, S.

Kim, G-H.

Kim, S-H.

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Kira, G.

Kita, S.

Koenderinc, A. F.

P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).

Kondo, S.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

Kurokawa, T.

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990).
[CrossRef]

Lee, C. P.

Lee, R. K.

Lee, Y-H

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Lee, Y-H.

G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
[CrossRef]

Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004).
[CrossRef] [PubMed]

Loffler, A.

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Lukin, M. D.

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Macleod, H. A.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Mekis, A.

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Mitsugi, M.

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mitsugi, S.

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

Mori, D.

T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007).
[CrossRef]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
[CrossRef]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Nozaki, K.

Olbright, G. R.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Painter, O.

Panepucci, R.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

Park, H-G.

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Peyghambarian, N.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

Ryu, H-Y.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, A. Scherer, " Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

Segawa, T.

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Smith, S. D.

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein.
[CrossRef] [PubMed]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B-S.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Sonnemans, T. L.

B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
[CrossRef]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

Sunner, T.

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takara, H.

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Tsuda, H.

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990).
[CrossRef]

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

Vahala, K.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Van Milligen, F.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Vos, W. L.

P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
[CrossRef]

Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
[CrossRef]

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Yariv, A.

Yokohama, I.

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004).
[CrossRef]

S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

Electron. Lett. (2)

K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003).
[CrossRef]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007).
[CrossRef]

Nature (4)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004).
[CrossRef] [PubMed]

Nature Mat. (1)

B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Nature Materials (2)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein.
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994.
[CrossRef] [PubMed]

Nature Photon. (3)

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Nature Physics (1)

Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007).
[CrossRef]

New J. Phys. (1)

K. Asakawa, et al. "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
[CrossRef]

Opt. Express (7)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624
[CrossRef] [PubMed]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670
[PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230
[CrossRef] [PubMed]

Opt. Express. (1)

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (3)

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003).
[CrossRef]

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).

Phys. Rev. B (2)

P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).

Phys. Rev. E (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Phys. Rev. Lett. (7)

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Other (8)

H. M. Gibbs, Optical bistability: controlling light with light. (Academic Press, Orlando, 1985).

E. Kuramochi, M. Notomi, S. Hughes, L. Ramunno, G. Kira, S. Mitsugi, A. Shinya, and T. Watanabe, "Scattering loss of photonic crystal waveguides and nanocavities induced by structural disorder," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CTuE1-1, 2005. (pp. 10-11)

S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual Meeting of IEEE LEOS (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 214-215.

M. Notomi, T. Tanabe, A. Shinya, S. Mitsugi, E. Kuramochi, and M. Morita, "Dynamic nonlinear control of resonator-waveguide coupled system in photonic crystals," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CWe4-1, 2005. (pp. 1020-1021).

M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 31p-YV-15, p.1208, Mar. 30, 2005.

M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system (2)," in Extended abstracts of the 66th autumn meeting of the Japan Society of Applied Physics, 9p-H-11, p.924, Sept. 9, 2005.

H. A. Haus, Waves and fields in optoelectronics (Prince-Hall, New Jersey, 1984).

S. Mitsugi, A. Shinya, T. Tanabe, M. Notomi, and I. Yokohama, "Design and FDTD analysis of micro photonic flip-flop based on 2D photonic crystal slab," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 30p-YV-11, p.1197, Mar. 30, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Width-modulated line-defect PhC cavities. (a) Cavity design: (from left to right) a starting straight line defect waveguide without theoretical loss and cavities with gradual light confinement. The rightmost cavity has the highest theoretical Q. The hole shifts are typically 9 nm (red holes), 6 nm (green holes), and 3 nm (blue holes). (b) Spectral measurement of a nanocavity fabricated in a silicon hexagonal air-hole photonic slab with a=420 nm and 2r=216 nm. The transmission spectrum of a cavity with a second-stage hole-shift. The inner and outer hole shifts are 8 and 4 nm, respectively. (c) Time-domain ring-down measurement. The time decay of the output light intensity from the same cavity as (b). Details can be found in [17].

Fig. 2.
Fig. 2.

Hexapole-mode single-point-defect silicon PhC cavities. (a) FDTD simulation of the field intensity profile for a hexapole cavity coupled to input and output waveguides. The inset shows the geometrical design of the hexapole cavity. (b) Spectral measurement of a hexapole cavity fabricated in a silicon hexagonal air-hole photonic slab with a=420 nm and 2r=176 nm The transmission spectrum across the input and output waveguides is shown. The hole shift is 0.23a. (c) Time-domain ring-down measurement. The time decay of the output light intensity from the same cavity as (b). The solid line is an exponential fit for the data. Ref is the reference data without the cavity (showing the time resolution of our set up).

Fig. 3.
Fig. 3.

Slow-light propagation measurement of a width-modulated line-defect cavity coupled to input and output waveguides. Sample and measurement setup (left). Measured output intensity as a function of time (right). The cavity is a width-modulated line-defect cavity with a three-stage hole shift. The shifts are 9, 6, and 3 nm in Fig. 1(a). The vertical scale for two curves is normalized. The transmittance via a cavity is less than 10% of the reference.

Fig. 4.
Fig. 4.

Propagation loss measurement of W1 waveguides fabricated in silicon hexagonal airhole PhCs with a=430 nm. The loss was determined from the transmitted light intensity as a function of the waveguide length (left). The loss spectrum (right). The minimum loss is 2dB/cm around the center of the transmission window. The horizontal axis in the right plot is normalized angular frequency ω, which is deduced as a/λ (a is the lattice constant). The loss measurement scheme is the same as that reported in [29].

Fig. 5.
Fig. 5.

Effect of size disorder on Q for various PhC cavities. Cavity A is a width-modulated line-defect cavity. (a=432 nm, 2r=230 nm, shift=9, 6, 3 nm). Cavity B is a hexapole cavity. (a=420 nm, 2r=168 nm, shift=0.23a). Cavity C is an end-hole shifted cavity. (a=420 nm, 2r=230 nm, shift=55 nm, 2r for the shifted holes=126 nm).

Fig. 6.
Fig. 6.

All-optical bistable switching in a silicon hexagonal air-hole PhC nanocavity realized by the thermo-optic nonlinearity induced by two-photon absorption in silicon. a=420 nm, 2r=0.55a. The radius of end-holes of the cavity is 0.125a. The radius of end-holes of the waveguide is 0.15a. The output is switched from ON to OFF with δB=20 pm, and OFF to ON with δB=260 pm. Both show similar bistable switching.

Fig. 7.
Fig. 7.

All-optical switching in a silicon PhC nanocavity realized by carrier-plasma nonlinearity induced by two-photon absorption in silicon. The right panel shows the output intensity of the signal light when applying a 6-ps control pulse with two different detuning conditions.

Fig. 8.
Fig. 8.

All-optical bistable memory operation in a silicon PhC nanocavity realized by the carrier-plasma nonlinearity induced by two-photon absorption in silicon. (left) Injected control light consisting of a pair of set and reset pulses. (right) Output signal intensity as a function of time for three different cases: with no set/reset pulses (red curve), with set pulse only (green curve), and with set and reset pulses (blue curve).

Fig. 9.
Fig. 9.

All-optical 5Gb/s demultiplexing operation by a random bit stream using a silicon PhC nanocavity switch.

Fig. 10.
Fig. 10.

All-optical SR flip-flop consisting of two bistable cavities coupled to waveguides. (a) Structural design based on a hexagonal air-hole 2D PhC. The air-hole diameter for the lattice is 0.55a. Two cavities are both seven-point end-hole shifted cavities. The end hole is shifted by -0.30a with 2r=0.24a. (b) Schematic of the design. (c) Equivalent electronic SR flip-flop. (d) Schematic operation of two bistable cavities. (e) Detailed design of CvS and CvR. (f) Detailed design of WG2. The hole diameter in the waveguide is 0.60a. (g) Time sequence of three inputs (bias, and set clock pulse, and reset clock pulse) and two outputs. (h) Simulated operation using 2D FDTD. A blue and red curves correspond to the output intensity of the two ports. The bottom plots are snapshots of intensity profiles in the device.

Fig. 11.
Fig. 11.

All-optical retiming circuit based on two bistable cavities. (a) Design based on a hexagonal air-hole 2D PhC with a=400 nm and 2r=0.55a. Two waveguides in the upper area (PA and PC) are W1 and the other two in the lower area (PB and PD) is W0.8. (b) Simulated operation.

Fig. 12.
Fig. 12.

Adiabatic wavelength conversion. (a) A five-point end-hole shifted PhC cavity used for the simulation. (b) Tuning of the refractive index for the tuned area in (a) as a function of time. (c) Wavelength spectra with and without tuning obtained by 3D FDTD calculation. (d) U, Δλ, and U/ω obtained by FDTD calculations. (e) Examples of classical oscillators, for which dynamic tuning is easily realized.

Fig. 13.
Fig. 13.

Photonic memory based on a directly-coupled cavity pair. (a) Design based on a 2D hexagonal air-hole PhC with a=400 nm and 2r=0.55a. Cavity M is a four-point-long cavity and Cavity G is a two-point-long cavity. (b) The resonant wavelength versus the detuning of the gate cavity calculated by FDTD. (c) Q versus the detuning calculated by FDTD. (d) A model for coupled-mode theory calculation. (e) The resonant wavelength versus the detuning calculated by the coupled-mode theory. (f) Q versus the detuning calculated by the coupled-mode theory.

Fig. 14.
Fig. 14.

Temporal operation of the photonic memory simulated by FDTD. (a) Read out. A stored pulse is read out by the index tuning. The green line is without index tuning otherwise the condition is the same as the red line. (b) Write in. An injected pulse is stored by index tuning. (d) Read and write. The combination of (a) and (b) results in the memory operation.

Fig. 15.
Fig. 15.

Photonic memory based on an indirectly-coupled cavity pair. (a) Design based on a 2D hexagonal air-hole PhC with a=400 nm and 2r=0.55a. (b) The resonant wavelength versus the detuning of the gate cavity calculated by FDTD. (c) Q versus the detuning calculated by FDTD. (d) A model for coupled-mode theory calculation. (e) The resonant wavelength versus the detuning calculated by the coupled-mode theory. (f) Q versus the detuning calculated by the coupled-mode theory. There is slight deviation between low-Q modes in (b, c) and (e, f), which might be due to numerical errors in FDTD, since it becomes difficult to resolve a low-Q mode when a high-Q mode coexists.

Fig. 16.
Fig. 16.

Temporal operation of the photonic memory simulated by FDTD. (a) Read out. A stored pulse is read out by the index tuning. The red curve is the light intensity in cavity E, and the dark yellow line is the light intensity at the waveguide. The monitoring positions are marked by crosses in Fig. 15(a). It is clearly seen that the light pulse is released from the cavity to the waveguide after the tuning. (b) Write in. An injected pulse is stored by the index tuning, and there is very little leak into the waveguide. (c) Read and write. The combination of (a) and (b) results in the memory operation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d a M d t = i ω G a + i κ a G
d a G d t = ( i ω G γ G ) a G + i κ a M + 2 γ G s 1 +
d a S d t = ( i ω S γ S ( 1 cos 2 ϕ ) ) a S + 2 γ S γ S e i ϕ a E + γ S ( 1 e 2 i ϕ ) s 1 +
d a E d t = ( i ω E γ E ) a E 2 γ E γ S e i ϕ a S + 2 γ E e i ϕ s 1 +

Metrics