Abstract

The development of surface enhanced Raman scattering (SERS) detection has made Raman spectroscopy relevant for highly sensitive lab-on-a-chip bio/chemical sensors. Despite the tremendous benefit in specificity that a Raman-based sensor can deliver, development of a lab-on-a-chip SERS tool has been limited thus far. In this work, we utilize an optofluidic ring resonator (OFRR) platform to develop a SERS-based detection tool with integrated microfluidics. The liquid core optical ring resonator (LCORR) serves both as the microfluidic sample delivery mechanism and as a ring resonator, exciting the metal nanoclusters and target analytes as they pass through the channel. Using this OFRR approach and R6G as the analyte, we have achieved a measured detection limit of 400 pM. The measured Raman signal in this case is likely generated by only a few hundred R6G molecules, which foreshadows the development of a SERS-based lab-on-a-chip bio/chemical sensor capable of detecting a low number of target analyte molecules.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99,5215-5217 (1977).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84,1-20 (1977).
    [CrossRef]
  3. M. Kerker, D.-S. Wang, and H. Chew, "Surface-enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles," Appl. Opt. 19,4159-4174 (1980).
    [CrossRef] [PubMed]
  4. A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
    [CrossRef]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  6. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275,1102-1106 (1997).
    [CrossRef] [PubMed]
  7. W. Xu, S. Xu, Z. Lü, L. Chen, B. Zhao, and Y. Ozaki, "Ultrasensitive detection of 1, 4-Bis(4-vinylpyridyl)phenylene in a small volume of low refractive index liquid by surface-enhanced Raman scattering-active light waveguide," Appl. Spectrosc. 58,414-419 (2004).
    [CrossRef] [PubMed]
  8. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
    [CrossRef]
  9. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
    [CrossRef]
  10. K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
    [CrossRef] [PubMed]
  11. I. M. White, H. Oveys, and X. Fan, "Liquid core optical ring resonator sensors," Opt. Lett. 31,1319-1321 (2006).
    [CrossRef] [PubMed]
  12. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146 (2007).
    [CrossRef] [PubMed]
  13. S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
    [CrossRef]
  14. V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).
  15. I. M. White and X. Fan, "Demonstration of composite microsphere cavity and surface enhanced Raman spectroscopy for improved sensitivity," Proc. SPIE 5994, 59940G (2005).
  16. K. A. Fuller and D. D. Smith, "Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects," Opt. Express 15,3575-3580 (2007).
    [CrossRef] [PubMed]
  17. I. M. White, J. D. Suter, H. Oveys, and X. Fan, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15,646-651 (2007).
    [CrossRef] [PubMed]
  18. P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86,3391-3395 (1982).
    [CrossRef]
  19. I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).
  20. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
    [CrossRef] [PubMed]
  21. M. Sumetsky, "Whispering-gallery-bottle microcavities: the three-dimensional etalon," Opt. Lett. 29, 8-10 (2004).
    [CrossRef] [PubMed]
  22. Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
    [CrossRef]
  23. H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
    [CrossRef] [PubMed]

2007 (7)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146 (2007).
[CrossRef] [PubMed]

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

K. A. Fuller and D. D. Smith, "Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects," Opt. Express 15,3575-3580 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Oveys, and X. Fan, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15,646-651 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

2006 (3)

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, "Liquid core optical ring resonator sensors," Opt. Lett. 31,1319-1321 (2006).
[CrossRef] [PubMed]

H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
[CrossRef]

I. M. White and X. Fan, "Demonstration of composite microsphere cavity and surface enhanced Raman spectroscopy for improved sensitivity," Proc. SPIE 5994, 59940G (2005).

2004 (2)

2001 (1)

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

1999 (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
[CrossRef]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275,1102-1106 (1997).
[CrossRef] [PubMed]

1982 (1)

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86,3391-3395 (1982).
[CrossRef]

1980 (1)

1977 (2)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99,5215-5217 (1977).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84,1-20 (1977).
[CrossRef]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99,5215-5217 (1977).
[CrossRef]

Al-Zoubi, F.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Armstrong, R. L.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Brewington, L.

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Chen, L.

Chew, H.

Cialla, D.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99,5215-5217 (1977).
[CrossRef]

Dale, P. S.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Drachev, V. P.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Emory, S. R.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275,1102-1106 (1997).
[CrossRef] [PubMed]

Fan, X.

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Oveys, and X. Fan, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15,646-651 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

I. M. White, H. Oveys, and X. Fan, "Liquid core optical ring resonator sensors," Opt. Lett. 31,1319-1321 (2006).
[CrossRef] [PubMed]

I. M. White and X. Fan, "Demonstration of composite microsphere cavity and surface enhanced Raman spectroscopy for improved sensitivity," Proc. SPIE 5994, 59940G (2005).

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Fuller, K. A.

Gohring, J.

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

Gu, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Hawkins, A. R.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Henkel, T.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Hou, L.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84,1-20 (1977).
[CrossRef]

Jin, G.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Kerker, M.

Khaliullin, E. N.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Kim, K.

H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
[CrossRef] [PubMed]

Kim, W.-T.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kohler, M.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86,3391-3395 (1982).
[CrossRef]

Liu, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
[CrossRef]

Lü, Z.

Lunt, E. J.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Measor, P.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Meisel, D.

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86,3391-3395 (1982).
[CrossRef]

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275,1102-1106 (1997).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
[CrossRef]

Oveys, H.

I. M. White, J. D. Suter, H. Oveys, and X. Fan, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15,646-651 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

I. M. White, H. Oveys, and X. Fan, "Liquid core optical ring resonator sensors," Opt. Lett. 31,1319-1321 (2006).
[CrossRef] [PubMed]

Ozaki, Y.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Park, H. K.

H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Podolskiy, V. A.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Popp, J.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Rauschenbeutel, A.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
[CrossRef]

Rosch, P.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Safonov, V. P.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Schmidt, H.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Shopova, S. I.

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

Smith, D. D.

Strehle, K. R.

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Sumetsky, M.

Suter, J. D.

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84,1-20 (1977).
[CrossRef]

Wang, D.-S.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Oveys, and X. Fan, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15,646-651 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

I. M. White, H. Oveys, and X. Fan, "Liquid core optical ring resonator sensors," Opt. Lett. 31,1319-1321 (2006).
[CrossRef] [PubMed]

I. M. White and X. Fan, "Demonstration of composite microsphere cavity and surface enhanced Raman spectroscopy for improved sensitivity," Proc. SPIE 5994, 59940G (2005).

Xu, S.

Xu, W.

Yan, H.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Yang, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Yoon, J. K.

H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
[CrossRef] [PubMed]

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

Zhang, P.

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

Zhao, B.

Zhu, H.

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

Anal. Chem. (1)

K. R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp, "A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system," Anal. Chem. 79,1542-1547 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89,204101 (2006).
[CrossRef]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, "On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides," Appl. Phys. Lett. 90,211107 (2007).
[CrossRef]

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90,221101 (2007).
[CrossRef]

Appl. Spectrosc. (1)

J. Am. Chem. Soc. (2)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99,5215-5217 (1977).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121,9932-9939 (1999).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84,1-20 (1977).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86,3391-3395 (1982).
[CrossRef]

Langmuir (1)

H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering," Langmuir 22,1626-1629 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72,031801 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Proc SPIE (1)

V. P. Drachev, W.-T. Kim, E. N. Khaliullin, F. Al-Zoubi, V. A. Podolskiy, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Discrete spectrum of anti-stokes emission from metal particle-adsorbate cornplexes in a microcavity," Proc SPIE 4748, 380-389 (2001).

Proc. SPIE (2)

I. M. White and X. Fan, "Demonstration of composite microsphere cavity and surface enhanced Raman spectroscopy for improved sensitivity," Proc. SPIE 5994, 59940G (2005).

I. M. White, J. D. Suter, H. Zhu, H. Oveys, L. Brewington, J. Gohring, and X. Fan, "Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator," Proc. SPIE 6556, 65560E (2007).

Science (1)

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275,1102-1106 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The LCORR uses a glass capillary to move the sample past the optical ring resonator, which is present in the circumference of the glass capillary wall.

Fig. 2.
Fig. 2.

SEM of a large silver cluster within a typically prepared silver colloid solution. The solution is dried onto a TEM grid in preparation for imaging.

Fig. 3.
Fig. 3.

(A) Experimental setup for measuring the Raman scattering signal from the LCORR. (B) Snapshot showing the LCORR capillary, the fiber taper, and the fiber probe.

Fig. 4.
Fig. 4.

(A) Experimental setup to characterize the SERS enhancement of the Ag colloid. (B) Measured Raman spectrum for 33 nM R6G in Ag colloid using the setup in (A). (C) Raman intensity versus R6G concentration in Ag colloid using the setup in (A). Each data point is the peak value of the characteristic R6G 1360 cm-1 Raman line for at least two averaged spectra. (D) Raman intensity versus R6G concentration in water. Again, each point is the peak value of the 1360 cm-1 line.

Fig. 5.
Fig. 5.

(A) Measured Raman spectra for 33 nM R6G in the LCORR during different time points after etching the wall thickness of the LCORR capillary. Curves are vertically shifted for clarity. (B) Calculated WGM intensity profile at the LCORR inner surface based on the measured sensitivity at the different etching time points. Calculation parameters: outer diameter=125µm; etch 1: wall thickness=3.3µm, resonant wavelength=784.55885 nm, angular momentum term=698; etch 2: wall thickness=2.85 µm, resonant wavelength=784.2459 nm, angular momentum term=698; etch 3: wall thickness=2.15 µm, resonant wavelength=783.6377 nm, angular momentum term=696. (C) Raman intensity versus the fraction of the mode intensity in the core as calculated in (B). Each data point is the peak value of the 1360 cm-1 line. (D) The recorded WGM following etches 1 and 2. Etch 1 Q-factor is 1.6×106, etch 2 Q-factor is 7.3×105.

Fig. 6.
Fig. 6.

Raman intensity from the LCORR versus optical power passing through the fiber taper for 33 nM R6G in Ag colloid. Each data point is the peak value of the 1360 cm-1 line for the average of at least two measured spectra.

Fig. 7.
Fig. 7.

(A) Raman intensity versus concentration with R6G in Ag colloid. Each data point is the peak value at 1360 cm-1 for at least two averaged spectra. Solid line is an exponential decay line fit. (B) Raman intensity versus concentration with R6G in water with no Ag nanoparticles. Again, each data point is the peak value at 1360 cm-1.

Fig. 8.
Fig. 8.

Measured Raman spectrum from 410 pM R6G in silver colloid. Trace is the average of six spectra with two minute integration time for each, and subsequent 5 point FFT smoothing. Background light at 1500 cm-1 and higher was not completely removed.

Metrics