Abstract

We theoretically investigate light scattering from a bi-sphere system consisting of a gold nanosphere and a lossless dielectric microsphere illuminated at a resonant optical wavelength of the microsphere. Using generalized multisphere Mie theory, we find that a gold nanosphere 100 times smaller than the dielectric microsphere can be detected with a subdiffraction resolution as fine as one-third wavelength in the background medium when the microsphere is illuminated at a Mie resonance. Otherwise, off-resonance, the spatial resolution reverts to that of the nonresonant nanojet, approximately one-half wavelength in the background medium. An important potential biophotonics application is the detection of antibody-conjugated gold nanoparticles attached to the membranes of living cells in an aqueous environment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).
  2. R.T. Wang, J.M. Greenberg, D.W. Shuerman, "Experimental results of dependent light scattering by two spheres," Opt. Lett. 6, 543-545 (1981).
    [CrossRef] [PubMed]
  3. G.W. Kattawar and C.E. Dean, "Electromagnetic scattering from two dielectric spheres: comparison between theory and experiment," Opt. Lett. 8, 48-50 (1983).
    [CrossRef] [PubMed]
  4. M. I. Mishchenko and D. W. Mackowski, "Light scattering by randomly oriented bispheres," Opt. Lett. 19, 1604-1606 (1994).
    [CrossRef] [PubMed]
  5. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "Scattering of light by bispheres with touching and separated components," Appl. Opt. 34, 4589-4599 (1995).
    [CrossRef] [PubMed]
  6. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
    [CrossRef]
  7. H.T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering by dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
    [CrossRef]
  8. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, "The effects of inter-cavity separation on optical coupling in dielectric bispheres," Opt. Express 14, 9460-9466 (2006).
    [CrossRef] [PubMed]
  9. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  10. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3D photonic nanojets," Opt. Express 13, 526-533 (2005).
    [CrossRef] [PubMed]
  11. Z. Chen, X. Li, A. Taflove and V. Backman, "Super-enhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
    [CrossRef] [PubMed]
  12. A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  13. I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
    [CrossRef] [PubMed]
  14. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
    [PubMed]
  15. Y.L. Xu, "Electronagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995).
    [CrossRef] [PubMed]
  16. S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
    [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Boston: Artech House 2005).
  18. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
    [CrossRef]
  19. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005).
    [CrossRef] [PubMed]
  20. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. -L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
    [CrossRef] [PubMed]
  21. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007).
    [CrossRef] [PubMed]
  22. Z. Chen, X. Li, A. Taflove, and V. Backman, "Enhanced backscattering of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt. 45, 633-638 (2006).
    [CrossRef] [PubMed]
  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover 1981).
  24. P.W. Barber and R.K. Change (Editors), Optical Effects Associated with Small Particles (World Scientific 1988).
  25. M.H. Fields, J. Popp, and R.K. Chang, "Nonlinear optics in microspheres," in Progress in Optics41, E. Wolf (editor), 1-96 (2000).
  26. http://www.microspheres-nanospheres.com
  27. P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  28. A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
    [CrossRef]
  29. M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
    [CrossRef]

2007

2006

A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
[CrossRef]

Z. Chen, X. Li, A. Taflove and V. Backman, "Super-enhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
[CrossRef] [PubMed]

Z. Chen, X. Li, A. Taflove, and V. Backman, "Enhanced backscattering of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt. 45, 633-638 (2006).
[CrossRef] [PubMed]

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, "The effects of inter-cavity separation on optical coupling in dielectric bispheres," Opt. Express 14, 9460-9466 (2006).
[CrossRef] [PubMed]

2005

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005).
[CrossRef] [PubMed]

A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
[CrossRef]

2004

2003

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
[CrossRef]

2002

1997

M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
[CrossRef]

1995

1994

1983

1981

1972

P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1967

C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).

Aaron, J.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Ashili, S. P.

Astratov, V. N.

Backman, V.

Challener, W. A.

Chen, Z.

Christy, R.W.

P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Crégut, O.

Dean, C.E.

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

El-Sayed, M.A.

I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Giusto, A.

A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
[CrossRef]

Greenberg, J.M.

Haacke, S.

Hane, K.

M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
[CrossRef]

Heifetz, A.

A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Hirlimann, C.

Huang, K.

A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Huang, X.

I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Itagi, A. V.

Johnson, P.B.

P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kapitonov, A. M.

Kattawar, G.W.

Kurosawa, T.

M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
[CrossRef]

Lecler, S.

Lecong, N.

Li, X.

Liang, C.

C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).

Lo, Y.T.

C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Mackowski, D. W.

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Meyrueis, P.

Mishchenko, M. I.

Miyano, K.

Miyazaki, H.

Miyazaki, H. T.

Miyazaki, H.T.

Paddon, P.

S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
[CrossRef]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Rehspringer, J. -L.

Richards-Kortum, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Sahakian, A.V.

A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Saija, R.

A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
[CrossRef]

Sasaki, M.

M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
[CrossRef]

Savasta, S.

A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
[CrossRef]

Shuerman, D.W.

Sokolov, K.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Sykes, E. C. H.

Taflove, A.

Takakura, Y.

Tanev, S.

S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
[CrossRef]

Travis, L. D.

Tuchin, V.V.

S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
[CrossRef]

Wang, R.T.

Xu, Y.L.

Appl. Opt.

Appl. Phys. Lett.

M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997).
[CrossRef]

A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Cancer Res.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

J. Biomed. Opt.

S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005).
[CrossRef]

Radio Sci

C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Boston: Artech House 2005).

H. C. van de Hulst, Light Scattering by Small Particles (Dover 1981).

P.W. Barber and R.K. Change (Editors), Optical Effects Associated with Small Particles (World Scientific 1988).

M.H. Fields, J. Popp, and R.K. Chang, "Nonlinear optics in microspheres," in Progress in Optics41, E. Wolf (editor), 1-96 (2000).

http://www.microspheres-nanospheres.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Mie-series calculation of the backscattering cross-section σ µ as a function of the wavelength λwater for a lossless 2µm diameter dielectric sphere with the refractive index contrast m=1.5. The MDR mode of interest (1, 26) is at λwater=305.7nm.

Fig. 2.
Fig. 2.

(a) Visualization of the normalized optical intensity in the H -plane for resonant illumination. The MDR mode l=1 n=26 is obtained with near-field Mie code for a lossless 2µm diameter dielectric microsphere with index contrast m=1.5 at the resonant wavelength λwater=305.7nm. (b) Optical intensity visualization in the H -plane for nonresonant illumination at λwater=306nm.

Fig. 3.
Fig. 3.

GMM-calculated perturbation of the backscattering cross-section of the lossless 2µm-diameter dielectric microsphere caused by the variable positioning of a 20nm gold nanosphere from the back surface of the microsphere along the longitudinal axis. The microsphere is illuminated at the resonant wavelength λwater=305.7nm (blue curve) and the nonresonant wavelength λwater=306nm (red curve). Distance z is the location of the center of the nanosphere from the back surface of the microsphere.

Fig. 4.
Fig. 4.

GMM-calculated perturbation of the backscattering cross-section of the lossless 2µm-diameter dielectric microsphere as a function of the transverse position of the 20nm-diameter gold nanosphere relative to the longitudinal axis in the H -direction. The gold nanosphere is at a distance z=80nm from the back surface of the dielectric microsphere.

Fig. 5.
Fig. 5.

GMM-calculated perturbation of the backscattering cross-section of the lossless 2µm-diameter dielectric microsphere as a function of the transverse position of a pair of 20nm-diameter gold nanospheres having a fixed center-to-center separation of 100nm=λwater/3. The nanospheres are located along a transverse line that is spaced 80nm from the back surface of the dielectric microsphere. The pair of gold nanospheres is translated transversely relative to the longitudinal axis in the H -direction. (a) λwater=305.7nm. (b) λwater=306nm.

Fig. 6.
Fig. 6.

GMM-calculated 3rd-power dependence of the absolute value of the backscattering cross-section perturbation |Δσµ+ν| upon the nanosphere diameter d. Note that the illuminating wavelength is fixed at λwater=305.7nm, the (1, 26) MDR mode of the dielectric microsphere of Fig. 2(a). Rayleigh scattering from the isolated nanosphere would have a 6th-power dependence on d for a fixed wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ b = π a 2 x 2 n = 1 ( 2 n 1 ) ( 1 ) n ( a n b n ) 2
a n = j n ( x ) [ m x j n ( m x ) ] ' m 2 j n ( m x ) [ x j n ( x ) ] ' h n ( 2 ) ( x ) [ m x j n ( m x ) ] ' m 2 j n ( m x ) [ x h n ( 2 ) ( x ) ] '
a n = j n ( x ) [ m x j n ( m x ) ] ' j n ( m x ) [ x j n ( x ) ] ' h n ( 2 ) ( x ) [ m x j n ( m x ) ] ' j n ( m x ) [ x h n ( 2 ) ( x ) ] '
Δ σ μ + ν = σ μ + ν σ μ σ μ

Metrics