Abstract

We study coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling via seamlessly jointed notches. Our finite-difference time-domain numerical simulations reveal that the throughput-port transmissions are reciprocal between counterclockwise (CCW) and clockwise (CW) traveling-wave modes, while the drop-port transmissions and modal field distributions are input-port dependent. By introducing a slight mismatch in radii between two coupled microdisks while preserving their seamlessly jointed notches, we are able to show selectively enhanced extinction ratio for one of the split modes while suppressing the other. Our experiments using coupled spiral-shaped microdisk resonators in silicon nitride-on-silica suggest split resonances with an extinction ratio of ~20 dB using identical coupled microdisks, and an enhanced resonance extinction ratio of ~24 dB using slightly mismatched coupled microdisks. The non-evanescent coupling preserves high-Q resonances.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
    [CrossRef]
  2. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
    [CrossRef] [PubMed]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  4. C. Li, X. Luo, and A. W. Poon, "Dual-microring-resonator electro-optic logic switches on a silicon chip," Semicond. Sci. Technol., accepted.
  5. X. Luo, J. Y. Lee and A. W. Poon, "Coupled spiral-shaped microdisk resonators with asymmetric non-evanescent coupling," in Proceedings of IEEE 4th International Conference on Group IV Photonics, (IEEE, 2007), pp.19 - 21.
  6. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
    [CrossRef]
  7. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
    [CrossRef]
  8. T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
    [CrossRef]
  9. A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
    [CrossRef]
  10. A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
    [CrossRef]
  11. N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
    [CrossRef]
  12. R. M. Audet, M. A. Belkin, J. A. Fan, F. Capasso, E. Narimanov, D. Bour, S. Corzine, J. Zhu, and G. Höfler, "Current injection spiral-shaped chaotic microcavity quantum cascade lasers," in Conference on Lasers and Electro-Optics 2007, (IEEE and Optical Society of America, 2007), paper CTuE4.
  13. A. Tulek and Z. V. Vardeny, "Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
    [CrossRef]
  14. S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
    [CrossRef] [PubMed]
  15. T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
    [CrossRef] [PubMed]
  16. C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
    [CrossRef]
  17. R. K. Chang, G. E. Fernandes, and M. Kneissl, "The quest for uni-directionality with WGMs in μ-Lasers: coupled oscillators and amplifiers," in Proceedings of 8th International Conference on Transparent Optical Networks, (IEEE, 2006), 1, pp. 47-51.
  18. G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
    [CrossRef] [PubMed]
  19. J. Y. Lee and A. W. Poon, "Spiral micropillar resonator-based unidirectional channel drop filters," in Proceedings of 8th International Conference on Transparent Optical Networks, (IEEE, 2006), 1, pp. 62-65.
  20. J. Y. Lee and A. W. Poon, "Spiral-shaped microdisk resonator-based channel drop filters on a silicon nitride chip," in Proceedings of IEEE 3rd International Conference on Group IV Photonics, (IEEE, 2006), pp.19 - 21.
  21. A. W. Poon, J. Y. Lee, and C. Chan, "Spiral microdisk resonator-based channel filters on a silicon chip: probing the out-of-plane scattering spectra," in Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, (IEEE, 2006), pp.234 - 239.
  22. J. Y. Lee, X. Luo, and A. W. Poon, "Spiral-shaped microdisk resonator channel drop/add filters: asymmetry in modal distributions," in Conference on Lasers and Electro-Optics 2007, (IEEE and Optical Society of America, 2007), paper JThD116.
  23. J. Y. Lee, X. Luo and A. W. Poon, "Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators," Opt. Express 15, 14650-14666 (2007).
    [CrossRef] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge, Cambridge University Press, 1999), pp.724-726.
  25. FullWAVE, Rsoft Inc. Research Software, http://www.rsoftinc.com
  26. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguide," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  27. L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851 - 6857 (2006).
    [CrossRef] [PubMed]
  28. C. Li, L. Zhou and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069 - 5076 (2007).
    [CrossRef] [PubMed]

2007 (6)

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
[CrossRef] [PubMed]

J. Y. Lee, X. Luo and A. W. Poon, "Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators," Opt. Express 15, 14650-14666 (2007).
[CrossRef] [PubMed]

C. Li, L. Zhou and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069 - 5076 (2007).
[CrossRef] [PubMed]

2006 (5)

L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851 - 6857 (2006).
[CrossRef] [PubMed]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
[CrossRef] [PubMed]

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

2004 (2)

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

2003 (1)

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

2000 (2)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguide," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Absil, P. P.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

Ben-Messaoud, T.

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

Chang, R. K.

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
[CrossRef] [PubMed]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Chern, G. D.

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
[CrossRef] [PubMed]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Cho, J.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

Choi, M.

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

DeRose, G. A.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Fernandes, G. E.

Fujii, A.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Ho, P. T.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

Hryniewicz, J. V.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

Johnson, N. M.

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
[CrossRef] [PubMed]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Kim, C. M.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
[CrossRef] [PubMed]

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Kneissl, M.

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, "High-Q-preserving coupling between a spiral and a semicircle μ-cavity," Opt. Lett. 32, 1093-1095 (2007).
[CrossRef] [PubMed]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Kurdoglyan, M. S.

Kwon, T. Y.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
[CrossRef] [PubMed]

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Lee, J.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

Lee, J. Y.

Lee, S. Y.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
[CrossRef] [PubMed]

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Li, C.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Little, B. E.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

Luo, X.

J. Y. Lee, X. Luo and A. W. Poon, "Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators," Opt. Express 15, 14650-14666 (2007).
[CrossRef] [PubMed]

C. Li, X. Luo, and A. W. Poon, "Dual-microring-resonator electro-optic logic switches on a silicon chip," Semicond. Sci. Technol., accepted.

Masuyama, K.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

Nakao, T.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

Nishimura, T.

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Ozaki, M.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Park, Y. J.

Poon, A. W.

Poon, J. K. S.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Rim, S.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

T. Y. Kwon, S. Y. Lee, M. S. Kurdoglyan, S. Rim, C. M. Kim, and Y. J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250 - 1252 (2006).
[CrossRef] [PubMed]

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Ryu, J. W.

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Song, Q.

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Takashima, T.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

Tsujimoto, N.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

Tulek, A.

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

Vardeny, Z. V.

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

Xu, L.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Yariv, A.

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
[CrossRef] [PubMed]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguide," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yoshida, Y.

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Yoshino, K.

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Zhou, L.

Zhu, L.

Zyss, J.

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillar," Appl. Phys. Lett. 83, 1710 - 1712 (2003).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485 - 2487 (2004).
[CrossRef]

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguide," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Tech. Lett. 12, 320-322 (2000).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiral-shaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

Jap. J. Appl. Phys. (2)

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jap. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on poly(p-phenylenevinylene) derivative," Jap. J. Appl. Phys. 45, L833-L836 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, "Quasiscarred resonances in a spiral-shaped microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Prog. Theor. Phys. (1)

C. M. Kim, S. Y. Lee, J. W. Ryu, T. Y. Kwon, S. Rim, J. Lee, and J. Cho, "Characteristics of lasing modes in a spiral-shaped microcavity," Prog. Theor. Phys.Suppl. 166, 112-118 (2007).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Li, X. Luo, and A. W. Poon, "Dual-microring-resonator electro-optic logic switches on a silicon chip," Semicond. Sci. Technol., accepted.

Other (9)

X. Luo, J. Y. Lee and A. W. Poon, "Coupled spiral-shaped microdisk resonators with asymmetric non-evanescent coupling," in Proceedings of IEEE 4th International Conference on Group IV Photonics, (IEEE, 2007), pp.19 - 21.

R. M. Audet, M. A. Belkin, J. A. Fan, F. Capasso, E. Narimanov, D. Bour, S. Corzine, J. Zhu, and G. Höfler, "Current injection spiral-shaped chaotic microcavity quantum cascade lasers," in Conference on Lasers and Electro-Optics 2007, (IEEE and Optical Society of America, 2007), paper CTuE4.

J. Y. Lee and A. W. Poon, "Spiral micropillar resonator-based unidirectional channel drop filters," in Proceedings of 8th International Conference on Transparent Optical Networks, (IEEE, 2006), 1, pp. 62-65.

J. Y. Lee and A. W. Poon, "Spiral-shaped microdisk resonator-based channel drop filters on a silicon nitride chip," in Proceedings of IEEE 3rd International Conference on Group IV Photonics, (IEEE, 2006), pp.19 - 21.

A. W. Poon, J. Y. Lee, and C. Chan, "Spiral microdisk resonator-based channel filters on a silicon chip: probing the out-of-plane scattering spectra," in Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, (IEEE, 2006), pp.234 - 239.

J. Y. Lee, X. Luo, and A. W. Poon, "Spiral-shaped microdisk resonator channel drop/add filters: asymmetry in modal distributions," in Conference on Lasers and Electro-Optics 2007, (IEEE and Optical Society of America, 2007), paper JThD116.

R. K. Chang, G. E. Fernandes, and M. Kneissl, "The quest for uni-directionality with WGMs in μ-Lasers: coupled oscillators and amplifiers," in Proceedings of 8th International Conference on Transparent Optical Networks, (IEEE, 2006), 1, pp. 47-51.

M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge, Cambridge University Press, 1999), pp.724-726.

FullWAVE, Rsoft Inc. Research Software, http://www.rsoftinc.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematics of the coupled spiral-shaped microdisk resonator-based filter configurations with lightwave input-coupled to the first cavity (a) counterclockwise (CCW) circulation mode, and (b) clockwise (CW) circulation mode. Insets: zoom-in schematics of the non-evanescent coupling via the joint notches. CCW circulation is preferentially confined in the first cavity and only enables a weak tail-to-tail mode spatial overlap with the second cavity. CW circulation is preferentially coupled to the second cavity due to significant mode spatial overlap [5].

Fig. 2.
Fig. 2.

Schematic illustrations of (a)–(c) coupled spiral-shaped microresonators and (d)–(f) coupled circular-shaped microresonators upon three input-coupling configurations. I, I’, I”: input, D, D’, D”: drop-port transmissions, and T, T’, T”: throughput-port transmissions.

Fig. 3.
Fig. 3.

FDTD-simulated TE-polarized multimode (a) throughput- and (b) drop-port transmission spectra of coupled spiral-shaped microdisk filters with r 0=5 µm, ε=0.16 for CCW (blue dashed line) and CW (red solid line) configurations.

Fig. 4.
Fig. 4.

FDTD-simulated steady-state mode-field patterns of the coupled spiral-shaped microdisk resonators for CCW and CW configurations at resonance wavelength of (a), (b) 1544.5 nm (resonance A) and (c), (d) 1554.1 nm (resonance B).

Fig. 5.
Fig. 5.

FDTD-simulated TE-polarized multimode transmission spectra with radius perturbations in the second microdisk for CCW and CW configurations. (a) Throughput-port, and (b) drop-port transmission spectra with r 1=5 µm and r 2=4.8 µm. (c) Throughput-port, and (d) drop-port transmission spectra with r 1=5 µm and r 2=5.4 µm.

Fig. 6.
Fig. 6.

Variations of (a) resonance wavelengths, (b) extinction ratios, and (c) quality factors as a function of the radii mismatch Δr=r 2-r 1 for both split modes.

Fig. 7.
Fig. 7.

FDTD-simulated steady-state mode-field patterns at resonance wavelengths of (a), (b) 1549.1 nm (resonance C), and (c), (d) 1561.9 nm (resonance D) for CCW and CW configurations with r 1=5 µm and r 2=4.8 µm.

Fig. 8.
Fig. 8.

(a) Top-view SEM of our fabricated device on a silicon nitride-on-silica substrate. The waveguide coupling length spans an angle of 36°. (b) Cross-section view SEM of the evanescent coupling region. h~0.93 µm. (c)–(d) Zoom-in view SEMs of the notch-coupling region and the lateral evanescent-coupling region. r 0~20 µm, ε~0.02, w~0.38 µm, and g~0.46 µm.

Fig. 9.
Fig. 9.

Measured TE-polarized transmission spectra for (a)–(b) coupled identical spiral-shaped microdisk resonators, and (c)–(d) coupled non-identical spiral-shaped microdisk resonators. (a) Throughput-port and (b) drop-port multimode transmission spectra for fabricated device with r 0=20 µm, ε=0.02. (c) Throughput-port and (d) drop-port multimode transmission spectra for fabricated device with r 1=20 µm, ε=0.02 and r 2=19.8 µm, ε=0.0202.

Metrics