Abstract

An optical modulator design based upon anti-crossing between coupled silicon microrings with independent amplitude and phase functionality is presented. The device exhibits over 25x improvement in sensitivity to an input drive signal when compared with previously studied microring modulators based on control of waveguide-resonator coupling. The new design also demonstrates an ON-OFF contrast of 14 dB, and has an ultra-compact footprint of 0.003 mm2. The observed sensitivity enhancement suggests that this modulator may be driven directly by digital CMOS electrical signals with less than 1 V amplitude.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network on chip," in Proceedings of the First IEEE International Symposium on Networks-on-Chips (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 53-64.
    [CrossRef]
  2. K. Bergman, L. P. Carloni, J. A. Kash, and Y. Vlasov, "On-chip photonic communication for high-performance multi-core processors," presented at the Eleventh Annual Workshop on High Performance Embedded Computing, Lexington, MA, 18-20 Sept. 2007.
  3. Q1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quant. Electron. 6, 1312-1317 (2000).
    [CrossRef]
  4. International Technology Roadmap for Semiconductors (ITRS 2006).
  5. http://www.itrs.net/
    [CrossRef]
  6. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  8. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-430
    [CrossRef] [PubMed]
  9. S. Manipatruni, Q. Xu, and M. Lipson, "PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator," Opt. Express 15, 13035-13042 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13035
    [CrossRef] [PubMed]
  10. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106-17113 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17106
  11. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," in Proceedings of the 20th Annual Meeting of the IEEE Lasers & Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2007), Postdeadline paper PD1.2.
    [CrossRef]
  12. Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
    [CrossRef] [PubMed]
  13. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-660
    [PubMed]
  14. A. Liu, L. Liao, D. Rubin, J. Basak, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky, and M. Paniccia, "High-speed silicon modulator for future VLSI interconnect," in OSA Topical Meeting on Integrated Photonics and Nanophotonics Research and Applications, Technical Digest (CD) (Optical Society of America, 2007), paper IMD3.
    [CrossRef]
  15. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef] [PubMed]
  16. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef]
  17. A. Yariv, "Critical coupling and its control in optical waveguide-resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002).
    [CrossRef] [PubMed]
  18. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control," Opt. Express 13, 1651-1659 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1651
    [CrossRef] [PubMed]
  19. C. L. Li, L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069
    [CrossRef]
  20. Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2007).
    [PubMed]
  21. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Silicon modulator based on anti-crossing between paired amplitude and phase tunable microring resonators," in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuQ3.
    [CrossRef]
  22. J. E. Heebner and R. W. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett. 24, 847-849 (1999).
    [CrossRef]
  23. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
    [CrossRef] [PubMed]
  24. S. Darmawan, Y. M. Landobasa, and M. K. Chin, "Phase engineering for ring enhanced Mach-Zehnder interferometers," Opt. Express 13, 4580-4588 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4580
    [CrossRef]
  25. M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, "Optimizing imbalance and loss in 2 x 2 3-dB multimode interference couplers via access waveguide width," J. Lightwave Technol. 21, 2305-2313 (2003).
    [CrossRef] [PubMed]
  26. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622
    [CrossRef] [PubMed]
  27. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927
    [CrossRef] [PubMed]
  28. F. Y, Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon On Insulator," Opt. Express 13, 8845-8854 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845
    [CrossRef] [PubMed]
  29. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3129
    [CrossRef] [PubMed]
  30. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  31. Q. Xu, J. Shakya, and M. Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14, 6463-6468 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6463

2007 (6)

2006 (3)

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14, 6463-6468 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6463

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (2)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622
[CrossRef] [PubMed]

2003 (3)

2002 (1)

A. Yariv, "Critical coupling and its control in optical waveguide-resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002).
[CrossRef] [PubMed]

2000 (2)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef] [PubMed]

Q1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quant. Electron. 6, 1312-1317 (2000).
[CrossRef]

1999 (1)

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef] [PubMed]

Analui, B.

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef] [PubMed]

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

J. E. Heebner and R. W. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett. 24, 847-849 (1999).
[CrossRef]

Chetrit, Y.

Chin, M. K.

Ciftcioglu, B.

Darmawan, S.

DeRose, G. A.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Franck, T.

Green, W. M. J.

Guckenberger, D.

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

J. E. Heebner and R. W. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett. 24, 847-849 (1999).
[CrossRef]

Hill, M. T.

Hodge, D.

Izhaky, N.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

Keil, U.

Khoe, G. D.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Kucharski, D.

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

Landobasa, Y. M.

Lee, R. K.

Leijtens, X. J. M.

Li, C. L.

Liao, L.

Lipson, M.

Liu, A.

Manipatruni, S.

McNab, S. J.

Miller, D. A. B.

Q1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quant. Electron. 6, 1312-1317 (2000).
[CrossRef]

Moll, N.

Morse, M.

Narasimha, A.

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

Nguyen, H.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Paniccia, M.

Poon, A. W.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Rooks, M. J.

Rubin, D.

Samara-Rubio, D.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Scherer, A.

Schmidt, B.

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

Sekaric, L.

Shakya, J.

Smit, M. K.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Vlasov, Y.

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2007).
[PubMed]

Vlasov, Y. A.

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

Xia, F.

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2007).
[PubMed]

Xu, Q.

Yariv, A.

W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control," Opt. Express 13, 1651-1659 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1651
[CrossRef] [PubMed]

A. Yariv, "Critical coupling and its control in optical waveguide-resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002).
[CrossRef] [PubMed]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef] [PubMed]

Zhou, L.

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef] [PubMed]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant. Electron. (1)

Q1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quant. Electron. 6, 1312-1317 (2000).
[CrossRef]

IEEE J. Solid-State Circuits (1)

Q2. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

A. Yariv, "Critical coupling and its control in optical waveguide-resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Nature Photonics (1)

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2007).
[PubMed]

Opt. Express (12)

S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622
[CrossRef] [PubMed]

W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control," Opt. Express 13, 1651-1659 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1651
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3129
[CrossRef] [PubMed]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, "Phase engineering for ring enhanced Mach-Zehnder interferometers," Opt. Express 13, 4580-4588 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4580
[CrossRef]

F. Y, Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon On Insulator," Opt. Express 13, 8845-8854 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845
[CrossRef] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14, 6463-6468 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6463

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-430
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-660
[PubMed]

C. L. Li, L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069
[CrossRef]

S. Manipatruni, Q. Xu, and M. Lipson, "PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator," Opt. Express 15, 13035-13042 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13035
[CrossRef] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106-17113 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17106

Opt. Lett. (1)

Phys. Rev. Lett. (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Other (7)

A. Liu, L. Liao, D. Rubin, J. Basak, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky, and M. Paniccia, "High-speed silicon modulator for future VLSI interconnect," in OSA Topical Meeting on Integrated Photonics and Nanophotonics Research and Applications, Technical Digest (CD) (Optical Society of America, 2007), paper IMD3.
[CrossRef]

International Technology Roadmap for Semiconductors (ITRS 2006).

http://www.itrs.net/
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network on chip," in Proceedings of the First IEEE International Symposium on Networks-on-Chips (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 53-64.
[CrossRef]

K. Bergman, L. P. Carloni, J. A. Kash, and Y. Vlasov, "On-chip photonic communication for high-performance multi-core processors," presented at the Eleventh Annual Workshop on High Performance Embedded Computing, Lexington, MA, 18-20 Sept. 2007.

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Silicon modulator based on anti-crossing between paired amplitude and phase tunable microring resonators," in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuQ3.
[CrossRef]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," in Proceedings of the 20th Annual Meeting of the IEEE Lasers & Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2007), Postdeadline paper PD1.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustrations of various modulators based on control of waveguide-resonator coupling. (a) Side-coupled racetrack resonator interacting with a bus waveguide via a generalized variable power coupler, (b) single amplitude resonator (SAR) modulator, (c) paired amplitude phase resonator (PAPR) modulator.

Fig. 2.
Fig. 2.

Optical microscope images of fabricated SOI modulator devices. (a) Paired amplitude phase resonator (PAPR) modulator, (b) single amplitude resonator (SAR) modulator. Red circles indicate “control terminal” locations at which an Ar-ion pump laser is focused for optical injection of free carriers. Inset: SEM image of the 3 dB multimode interference coupler.

Fig. 3.
Fig. 3.

Series of PAPR modulator transmission spectra, obtained as a function of increasing Ar-ion pump laser power incident upon the phase resonator. Interaction with the phase resonance results in large modulation of transmission at the amplitude resonance. Spectra are vertically offset from one another for visibility.

Fig. 4.
Fig. 4.

(a) Comparison of relative transmission at zero detuning through the PAPR and SAR modulator devices, as a function of incident Ar laser power. (b) Temporal modulation of transmission through a PAPR device. Inset: Rapid signal attenuation occurs with a fall time of ~60 ps.

Fig. 5.
Fig. 5.

Simulated PAPR transmission map, showing anti-crossing behavior near the joint amplitude-phase resonance condition. The colorbar on the right labels the normalized transmitted power.

Metrics