Abstract

Liquid crystal tunable planar Bragg Gratings produced by Direct UV Writing are capable of wavelength tuning of over 100GHz. However, such devices exhibit non-linear tuning curves with threshold points and hysteresis. We show that these effects are due to the formation of disclination structures in the liquid crystal and discuss the role of electrode defects and sample temperature on wavelength tuning.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dragone, “Low-loss wavelength routers for WDM optical networks and high-capacity IP routers,” J. Lightwave Technol. 23, 66–79 (2005).
    [Crossref]
  2. L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
    [Crossref]
  3. X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
    [Crossref]
  4. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
    [Crossref]
  5. A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
    [Crossref]
  6. B. Srinivasan and R. K. Jain, “First Demonstration of Thermally Poled Electrooptically Tunable Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 12, 170–172 (2000).
    [Crossref]
  7. S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.
  8. I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
    [Crossref]
  9. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
    [Crossref]
  10. F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
    [Crossref] [PubMed]
  11. P. J. Collings and M. Hird, Introduction to Liquid Crystals, (Taylor & Francis, London, 1997).
    [Crossref]
  12. I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
    [Crossref]

2007 (1)

2005 (3)

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

C. Dragone, “Low-loss wavelength routers for WDM optical networks and high-capacity IP routers,” J. Lightwave Technol. 23, 66–79 (2005).
[Crossref]

2002 (2)

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

2000 (1)

B. Srinivasan and R. K. Jain, “First Demonstration of Thermally Poled Electrooptically Tunable Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 12, 170–172 (2000).
[Crossref]

1999 (1)

1998 (1)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

1994 (1)

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Abbate, G.

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

Adikan, F. R. M.

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

An, H.-L.

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Baek, S.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Bennion, I.

Chisholm, K. E.

Collings, P. J.

P. J. Collings and M. Hird, Introduction to Liquid Crystals, (Taylor & Francis, London, 1997).
[Crossref]

Costantini, D. M.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Dragone, C.

Dyadyusha, A.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

Emmerson, G. D.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Everall, L. A.

Fox, G. R.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Gates, J. C.

Gawith, C. B. E.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Hird, M.

P. J. Collings and M. Hird, Introduction to Liquid Crystals, (Taylor & Francis, London, 1997).
[Crossref]

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Iocco, A.

Jain, R. K.

B. Srinivasan and R. K. Jain, “First Demonstration of Thermally Poled Electrooptically Tunable Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 12, 170–172 (2000).
[Crossref]

Jeong, C.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Jeong, Y.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Kaczmarek, M.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

Ky, N. H.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Lee, B.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Lee, S.-D.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Limberger, H. G.

A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Lin, X.-Z.

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Liu, H.-D.

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Major, H. E.

Mormille, P.

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

Muller, C. A. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Noh, S. Y.

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Petti, L.

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

Righini, G. C.

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

Sager, D. A.

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

Salathé, R. P.

A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

Sirleto, L.

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

Smith, P. G. R.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Sparrow, I. J. G.

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100GHz electrically tunable liquidcrystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32, 1542–1544 (2007).
[Crossref] [PubMed]

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

Srinivasan, B.

B. Srinivasan and R. K. Jain, “First Demonstration of Thermally Poled Electrooptically Tunable Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 12, 170–172 (2000).
[Crossref]

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Williams, J. A. R.

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Zhang, Y.

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Appl. Phys. B (1)

I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Appl. Phys. B 81, 1–4 (2005).
[Crossref]

Elec. Lett. (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Elec. Lett. 38, 1531–1532 (2002).
[Crossref]

Electron. Lett. (1)

X.-Z. Lin, Y. Zhang, H.-L. An, and H.-D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Fiber Integr. Opt. (1)

L. Sirleto, L. Petti, P. Mormille, G. C. Righini, and G. Abbate, “Fast Integrated Electro-Optical Switch and Beam Deflector Based on Nematic Liquid Crystal Waveguides,” Fiber Integr. Opt. 21, 435–449 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[Crossref]

B. Srinivasan and R. K. Jain, “First Demonstration of Thermally Poled Electrooptically Tunable Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 12, 170–172 (2000).
[Crossref]

J. Lightwave Technol. (2)

Opt. Lett. (1)

Quantum Electronics and Laser Science Conference (1)

I. J. G. Sparrow, D. A. Sager, C. B. E. Gawith, P. G. R. Smith, G. D. Emmerson, M. Kaczmarek, and A. Dyadyusha, “25GHz tunability of planar bragg grating using liquid crystal cladding and electric field,” Quantum Electronics and Laser Science Conference 2, 963–965 (2005).
[Crossref]

Other (2)

P. J. Collings and M. Hird, Introduction to Liquid Crystals, (Taylor & Francis, London, 1997).
[Crossref]

S. Baek, C. Jeong, S. Y. Noh, Y. Jeong, S.-D. Lee, and B. Lee, “Electrically tunable fiber Bragg gratings using liquid crystal cladding,” in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, (CLEO/Pacific Rim, 2005), pp. 1078–1079.

Supplementary Material (1)

» Media 1: MOV (2452 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Absolute device tuning curves for both TE and TM polarised light showing hysteresis between points A and B. The insets show the same curves for increasing (arrow pointing downwards) and decreasing (arrow pointing upwards) voltages. In inset (i), the circles numbered 1 and 2 show the two threshold points at ~22V and ~57V respectively. In inset (ii), the low voltage threshold at ~17V is circled and numbered 3.

Fig. 2.
Fig. 2.

Schematic of a LC cell showing electrode structure.

Fig. 3.
Fig. 3.

Schematic of a LC cell for thermal measurements.

Fig. 4.
Fig. 4.

Disclination line dynamics seen via crossed polarizers when ramping an a.c. voltage up and down, taken from attached movie (2.4MB). [Media 1]

Fig. 5.
Fig. 5.

(a). Centre Bragg wavelength drift under ambient conditions (b) Wavelength shift with controlled temperature

Fig. 6.
Fig. 6.

Effects of applying a voltage to LC cell for various durations and at various intervals.

Metrics