Abstract

Silicon p+-i-n+ diode Mach-Zehnder electrooptic modulators having an ultra-compact length of 100 to 200 µm are presented. These devices exhibit high modulation efficiency, with a Vπ·L figure of merit of 0.36 V-mm. Optical modulation at data rates up to 10 Gb/s is demonstrated with low RF power consumption of only 5 pJ/bit.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network on chip," in Proceedings of the First IEEE International Symposium on Networks-on-Chips (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 53-64.
    [CrossRef]
  2. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
    [CrossRef]
  3. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  4. R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm," IEEE J. Quantum Electron. 22, 873-879 (1986).
    [CrossRef]
  5. G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]
  6. G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
    [CrossRef]
  7. C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
    [CrossRef]
  8. P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
    [CrossRef]
  9. Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  10. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  12. C. Li, L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007).
    [CrossRef] [PubMed]
  13. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  14. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  15. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  16. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
    [CrossRef]
  17. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," in Proceedings of the 20th Annual Meeting of the IEEE Lasers & Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2007), Postdeadline paper PD1.2.
  18. L. Sekaric, S. J. McNab, and Y. A. Vlasov, "Y-splitters in photonic wires and photonic crystal waveguides," presented at the VI Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005. http://www.research.ibm.com/photonics/posters/splittters_pecsvi.pdf
  19. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
    [CrossRef] [PubMed]
  20. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices," J. Lightwave Technol. 21, 2332-2339 (2003).
    [CrossRef]
  21. F. Gardes, G. Reed, N. Emerson, and C. Png, "A sub-micron depletion-type photonic modulator in Silicon On Insulator," Opt. Express 13, 8845-8854 (2005).
    [CrossRef] [PubMed]
  22. H. Stark, F. B. Tuteur, and J. B. Anderson, Modern Electrical Communications, (Prentice Hall, Englewood Cliffs, 1988).
  23. S. Haykin, Communication Systems, (Wiley, New York, 1994).
  24. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kartner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, "Silicon photonics for compact energy-efficient interconnects," J. Opt. Netw. 6, 63-73 (2007).
    [CrossRef]
  25. F. Gan, S. J. Spector, M. W. Geis, M. E. Grein, R. T. Schulein, J. U. Yoon, T. M. Lyszczarz, and F. X. Kartner, "Compact, low-power, high-speed silicon electro-optic modulator," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuQ6.
    [PubMed]

2007 (4)

2006 (1)

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

2005 (3)

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

2003 (2)

2000 (2)

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
[CrossRef]

1995 (1)

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

1991 (2)

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

1986 (1)

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Almeida, V. R.

Analui, B.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

Barrios, C. A.

Barwicz, T.

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Byun, H.

Chabloz, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Chetrit, Y.

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Dainesi, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Declerq, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Emerson, N.

Fazan, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Fluckiger, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Franck, T.

Gan, F.

Gardes, F.

Geis, M.

Grein, M.

Guckenberger, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

Halbout, J.-M.

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
[CrossRef]

Hodge, D.

Holzwarth, C. W.

Hoyt, J. L.

Ionescu, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Ippen, E. P.

Izhaky, N.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Kartner, F. X.

Keil, U.

Kucharski, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

Kung, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Lagos, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Li, C.

Liao, L.

Lipson, M.

Liu, A.

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Lyszczarz, T.

Manipatruni, S.

May, P. G.

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

McNab, S.

Miller, D. A. B.

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
[CrossRef]

Moll, N.

Morse, M.

Narasimha, A.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Olubuyide, O. O.

Orcutt, J. S.

Panepucci, R.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Png, C.

Poon, A. W.

Popovic, M. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Rakich, P. T.

Ram, R. J.

Reed, G.

Reed, G. T.

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Renaud, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Robert, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Rubin, D.

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Shakya, J.

Smith, H. I.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Spector, S.

Stojanovic, V.

Tang, C. K.

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Treyz, G. V.

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
[CrossRef]

Vlasov, Y.

Watts, M. R.

Xu, Q.

Yoon, J. U.

Zhou, L.

Appl. Phys. Lett. (1)

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Electron. Lett. (1)

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

IEEE Electron Device Lett. (1)

G. V. Treyz, P. G. May, and J.-M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett. 12, 276-278 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
[CrossRef]

IEEE J. Solid-State Circuits (1)

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, and P. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

Other (6)

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," in Proceedings of the 20th Annual Meeting of the IEEE Lasers & Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2007), Postdeadline paper PD1.2.

L. Sekaric, S. J. McNab, and Y. A. Vlasov, "Y-splitters in photonic wires and photonic crystal waveguides," presented at the VI Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005. http://www.research.ibm.com/photonics/posters/splittters_pecsvi.pdf

H. Stark, F. B. Tuteur, and J. B. Anderson, Modern Electrical Communications, (Prentice Hall, Englewood Cliffs, 1988).

S. Haykin, Communication Systems, (Wiley, New York, 1994).

F. Gan, S. J. Spector, M. W. Geis, M. E. Grein, R. T. Schulein, J. U. Yoon, T. M. Lyszczarz, and F. X. Kartner, "Compact, low-power, high-speed silicon electro-optic modulator," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuQ6.
[PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network on chip," in Proceedings of the First IEEE International Symposium on Networks-on-Chips (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 53-64.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Cross-sectional scanning electron microscope image of the SOI p+-i-n+ diode nanophotonic rib waveguide used. The heavily doped p+/n+ regions are hatched, and the nickel silicide contact regions are highlighted in gold false color. A 25 nm layer of silicon dioxide remains on top of the rib waveguide. (b). Electrical I-V trace taken for a modulator with LMZM=100 µm, illustrating a low forward resistance of 49 Ω. Inset: Schematic of the asymmetric MZM device geometry fabricated.

Fig. 2.
Fig. 2.

(a). Application of a 9 MHz sinusoidal voltage with peak-to-peak amplitude of Vπ=1.8 V to a LMZI=200 µm modulator (Vbias=1.8 V). (b) The resulting half-period of sinusoidal optical modulation occurring between the maxima/minima indicated by arrows illustrates a Vπ·L product of 0.36 V-mm.

Fig. 3.
Fig. 3.

(a). Pre-emphasized electrical drive signal at 5 Gb/s. Transitions between 0 and 1 bits have large amplitude, while consecutive 0’s or 1’s are suppressed. (b) Corresponding optical signal at the output of a LMZM=100 µm modulator.

Fig. 4.
Fig. 4.

Eyeline diagrams of NRZ optical data signals (PRBS 27-1) produced by several ultracompact MZM devices. (a) LMZM=100 µm modulator operating at 5 Gb/s. (b) LMZM=200 µm modulator operating at 10 Gb/s.

Tables (1)

Tables Icon

Table 1. Comparison of power consumption for recently reported SOI optical modulators.

Metrics