Abstract

We report a periodically poled lithium niobate (PPLN) crystal for both temperature-insensitive laser Q-switching and temperature-tuned wavelength conversion. The PPLN crystal consists of two sections, a 20.3-µm period section functioning as an electro-optic Bragg grating for Q-switching a diode-pumped Nd:YVO4 laser at 1064 nm and a 31-µm-period section functioning as an optical parametric generator for down converting the generated 1064-nm laser. When driving the PPLN Bragg grating with 170-V voltage pulses, we measured 181 µJ pulse energy at 1064 nm from the Nd:YVO4 laser pumped by 20.4 W diode power. The 181-µJ pulsed laser was further converted into mid-infrared radiation in the monolithic PPLN crystal with 35% parametric efficiency. The wavelengths were broadly tunable in the range of 1.75–1.88 µm (signal) and 2.7–2.44 µm (idler) via temperature without affecting the performance of the PPLN Bragg Qswitch.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and C. DillIII, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716-718 (1995).
    [CrossRef] [PubMed]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  5. Y. H. Chen and Y. C. Huang, "Actively Q -switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q -switch," Opt. Lett. 28, 1460-1462 (2003).
    [CrossRef] [PubMed]
  6. Y. H. Chen, Y.Y. Lin, C.H. Chen and Y. C. Huang, "Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q switching and parametric oscillation in a Nd:YVO4 laser," Opt. Lett. 30,1045-1047 (2005).
    [CrossRef] [PubMed]
  7. Y.Y. Lin, S.T. Lin, G.W. Chang, A.C. Chiang, Y.C. Huang and Y.H. Chen, "Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch," Opt. Lett. 32, 545-547 (2007).
    [CrossRef] [PubMed]
  8. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
    [CrossRef]
  9. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1999).
    [CrossRef]

2007

2005

2004

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

2003

2000

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1999

1995

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Chang, G.W.

Chen, C.H.

Chen, Y. H.

Chen, Y.H.

Chiang, A.C.

de Angelis, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

De Nicola, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Dill, C.

Eckardt, R. C.

Fejer, M. M.

Ferraro, P.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Finizio, A.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Grilli, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Huang, Y. C.

Huang, Y.C.

Jundt, D. H.

Lin, S.T.

Lin, Y.Y.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Paturzo, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Pierattini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

Pierce, J. W.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Zayhowski, J. J.

Appl. Phys. Lett.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, "Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method," Appl. Phys. Lett. 85,2785-2787 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Illustration of a laser beam diffracted by a Bragg grating at Bragg condition. (b) Transmittance of the PPLN Bragg modulator at 1064 nm along the 0th-order direction versus applied voltage for different beam waist radii in the crystal. The half-wave voltage is about 170 V. The reduced diffraction efficiency at a small beam size is due to the broad angular spectrum of the laser beam.

Fig. 2.
Fig. 2.

Schematic of the compact optical parametric generator pumped by a PPLN Q-switched Nd:YVO4 laser. The short PPLN section functions as a laser Q-switch and the long PPLN section functions as an OPG. The 1064 nm laser cavity is formed by the flat mirror M1 and the output coupler (OC). The two 1064 nm HR mirrors were used to deflect the 1064 nm laser pulses into the OPG PPLN. HR, high reflection.

Fig. 3.
Fig. 3.

The output pulse energy of the actively Qswitched Nd:YVO4 laser increases monotonically with the diode pump power at a 1 kHz Q-switching rate. At 20.4-W diode power, the 1064-nm laser generates 181-µJ pulse energy with a pulse width of 8 ns.

Fig. 4.
Fig. 4.

The OPG signal energy versus 1064-nm pump energy at a 1 kHz Q-switching rate. When the 1064-nm pumping energy was 172 µJ, the OPG signal pulse energy reached 37.4 µJ.

Fig. 5.
Fig. 5.

The temporal profile of the OPG signal pulse with 172-µJ pump energy at 1064 nm. The inset shows original and depleted pump pulses before and after the OPG PPLN. The exponential gain in the parametric amplification process strongly depletes the 8-ns pump pulse and generates a shortened signal pulse.

Fig. 6.
Fig. 6.

Temperature tuned parametric wavelengths (filled dots) and the correspondingly measured parametric conversion efficiency. The solid line is the theoretical curve calculated from the published Sellmeier equation [9].

Metrics