Abstract

In this paper, Co2O3 was codoped in LiNbO3: Fe crystals. It was found that Co codoping can give rise to the strong photochromic effect in LiNbO3: Fe. Based on the UV-VIS-NIR absorption spectra, photorefractive sensitivities, and EPR results for both virgin and sensitized states of the crystal, the photochromic mechanism in this material was suggested as follows. During sensitization, electrons transfer from O2- to Fe3+ directly while holes are thermally excited from O- into the valence band and then partly trapped by Co2+, which leads to the darkening of the crystal. In bleaching process, the electrons are excited from Fe2+ to the conduction band by green light and recombine with the holes on the Co2+ level. Sensitizing/bleaching experiments were also carried out in LiNbO3: Fe: Co crystals. Fast sensitization found for this material is beneficial to two-color recording.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II, (Springer-Verlag, Heidelberg, 1989).
  2. K. Buse, "Light-induced charge transport processes in photorefractive crystals II: Materials," Appl. Phys. B 64, 391-407 (1997).
    [CrossRef]
  3. K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
    [CrossRef]
  4. L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
    [CrossRef]
  5. W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).
  6. D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
    [CrossRef]
  7. H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).
  8. M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
    [CrossRef]
  9. M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
    [CrossRef]
  10. A. Adibi, K. Buse, and D. Psaltis, "Two-center holographic recording," J. Opt. Soc. Am. B 18, 584-601 (2001).
    [CrossRef]
  11. A. Adibi, K. Buse, and D. Psaltis, "System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate," Appl. Opt. 40, 5175-5182 (2001).
    [CrossRef]
  12. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
    [CrossRef]
  13. Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
    [CrossRef]
  14. D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
    [CrossRef]
  15. K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 391-407 (1997).
    [CrossRef]
  16. O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
    [CrossRef]
  17. D. Rytz, B. A. Wechsler, M. H. Garrett, C. C. Nelson, and R. N. Schwartz, "Photorefractive properties of BaTiO3:Co," J. Opt. Soc. Am. B 7, 2245-2254 (1990).
    [CrossRef]
  18. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, "High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co," J. Opt. Soc. Am. B 9, 1407-1415 (1992).
    [CrossRef]
  19. Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
    [CrossRef]

2005 (1)

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

2003 (2)

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
[CrossRef]

2001 (3)

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, "Two-center holographic recording," J. Opt. Soc. Am. B 18, 584-601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, "System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate," Appl. Opt. 40, 5175-5182 (2001).
[CrossRef]

2000 (1)

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

1999 (1)

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

1998 (2)

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

1997 (2)

K. Buse, "Light-induced charge transport processes in photorefractive crystals II: Materials," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

1992 (1)

1991 (1)

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

1990 (1)

1978 (1)

H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

1972 (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Adibi, A.

Amodei, J. J.

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Berben, D.

Buse, K.

Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, "Two-center holographic recording," J. Opt. Soc. Am. B 18, 584-601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, "System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate," Appl. Opt. 40, 5175-5182 (2001).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals II: Materials," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

Chang, J. Y.

Choh, S. H.

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Choi, Y. N.

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Fujita, H.

H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).

Furukawa, Y.

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Garrett, M. H.

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Hartwig, U.

Hatano, H.

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Hudson, T. D.

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

Inoue, M.

H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).

Jenssen, H. P.

Keeble, D. J.

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kim, I. G.

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

Kim, S. S.

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Kitamura, K.

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Krätzig, E.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Lee, M.

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Li, G. G.

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Liu, D. A.

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Liu, L. R.

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Loyo-Menoyo, M.

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

Luennemann, M.

McMillen, D. K.

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

Nelson, C. C.

Park, I. W.

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Park, S. S.

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Phillips, W.

H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Psaltis, D.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Ren, L. Y

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Rytz, D.

Schirmer, O.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Schwartz, R. N.

Singleton, J.

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

Staebler, D. L.

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Takekawa, S.

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Tanaka, S.

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Thiemann, O.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Uchida, Y.

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

Wagner, J.

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

Warde, C.

Wechsler, B. A.

Wöehlecke, M.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Yang, Y. P.

Zhou, Ch. H.

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Appl. Phys. B (2)

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals II: Materials," Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

J. Appl. Phys. (2)

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, and S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording," J. Appl. Phys. 88, 4476-4485 (2000).
[CrossRef]

M. Lee, I. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage," J. Appl. Phys. 89, 5311-5317 (2001).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. Solids (1)

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

J. Phys.: Condens. Matter (1)

Y. N. Choi, I. W. Park, S. S. Kim, S. S. Park, and S. H. Choh, "Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals," J. Phys.: Condens. Matter 11, 4723-4730 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Fujita, M. Inoue, and W. Phillips, "Optical properties of Cobalt-doped lithium niobate," Jpn. J. Appl. Phys. 44, 1909-1917 (1978).

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

Opt. Express (1)

D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium niobate crystals," Opt. Express 12, 491-502 (1998).
[CrossRef]

Opt. Mater. (1)

L. Y Ren, L. R. Liu, D. A. Liu, Ch. H. Zhou, and G. G. Li, "Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu," Opt. Mater. 23, 261-267 (2003).
[CrossRef]

Phys. Rev. B (1)

D. J. Keeble, M. Loyo-Menoyo, Y. Furukawa, and K. Kitamura, "Electron paramagnetic resonance of Fe3+ in LiNbO3," Phys. Rev. B 71, 224111 (2005).
[CrossRef]

RCA Rev. (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Other (1)

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II, (Springer-Verlag, Heidelberg, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Schematic of the experimental arrangement for one-color recording. Two e-polarized beams with equal intensities of 110 mW/cm2 were used for the recording. The readout beam is denoted as “R”. (b). Schematic of the experimental arrangement for sensitizing and bleaching. UV light emitted from mercury lamp was used for sensitizing. The intensity of the NIR probe beam is 1mW/cm2. The expanded green beam for bleaching is omitted in the figure. The transmission and reference beams are denoted as “T” and “R”, respectively.

Fig. 2.
Fig. 2.

Photograph of the sample with both virgin and sensitized states. The virgin state presents a purple color while the sensitized state exhibits the dark reddishness.

Fig. 3.
Fig. 3.

Unpolarized light absorption spectra for both virgin and sensitized states. The left inset shows the UV-light-induced absorption, e.g. the absorption difference between the virgin and sensitized states. For comparison, the right inset shows the absorption difference between LN singly-doped with Fe and pure LN.

Fig. 4.
Fig. 4.

Recording time constant and sensitivity plotted with the ULIA at 514 nm, where the variable ULIA was controlled by the UV exposure fluence.

Fig. 5.
Fig. 5.

EPR spectra of LiNbO3: Fe: Co crystals. The left and right insets show the EPR signals near 2000 Gauss for the virgin and sensitized states, respectively.

Fig. 6.
Fig. 6.

(a). Sensitizing curves of the ULIA in different UV intensities. The inset shows the dependence of sensitizing time constant on UV intensity. (b). Bleaching curves of the ULIA in different bleaching intensities. The inset shows the dependence of bleaching time constant on bleaching intensity.

Fig. 7.
Fig. 7.

Sketch of the photochromic process in LiNbO3: Fe: Co. The solid and dash arrows denote the sensitizing and bleaching processes, respectively.

Metrics