Abstract

Most photovoltaic (solar) cells are made from crystalline silicon (c-Si), which has an indirect band gap. This gives rise to weak absorption of one-third of usable solar photons. Therefore, improved light trapping schemes are needed, particularly for c-Si thin film solar cells. Here, a photonic crystal-based light-trapping approach is analyzed and compared to previous approaches. For a solar cell made of a 2 µm thin film of c-Si and a 6 bilayer distributed Bragg reflector (DBR) in the back, power generation can be enhanced by a relative amount of 24.0% by adding a 1D grating, 26.3% by replacing the DBR with a six-period triangular photonic crystal made of air holes in silicon, 31.3% by a DBR plus 2D grating, and 26.5% by replacing it with an eight-period inverse opal photonic crystal.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
    [CrossRef]
  2. ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
  3. A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
    [CrossRef]
  4. D. Fischer, S. Dubail, J. Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, "The micromorph solar cell: extending a-Si:H technology towards thin film crystalline silicon," Twenty-fifth Photovolt. Spec. Conf. p. 1053 (1996).
    [CrossRef]
  5. R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany, 2003).
    [CrossRef]
  6. K. Wada, L. C. Kimerling, and N. Toyoda, "Back reflector of solar cells," (June 15, 2004). US patent no. 6750393.
  7. E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982).
    [CrossRef]
  8. R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
    [CrossRef]
  9. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
    [CrossRef]
  10. L. Feitknecht, J. Steinhauser, R. Schluchter, S. Fay, D. Domine, E. Vallat-Sauvin, F. Meillaud, C. Ballif, and A. Shah, "Investigations on fill-factor drop of microcrystalline silicon p-i-n solar cells deposited onto highly surface-textured ZnO substrates," in Tech. Digest PVSEC-15 (Shanghai, China, 2005).
  11. H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
    [CrossRef]
  12. J. Gee, "Optically enhanced absorption in thin silicon layers using photonic crystals," in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150-153 (2002).
  13. L. Zeng, Y. Yi, C.-Y. Hong, X. Duan, and L. C. Kimerling, "New Light Trapping in Thin Film Solar Cells Using Textured Photonic Crystals," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2005) Vol. 862.
  14. L. Zeng, P. Bermel, Y. Yi, N. Feng, C.-Y. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Optimization of textured photonic crystal backside reflectors for silicon thin-film solar cells," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2006) Vol. 974E.
  15. L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
    [CrossRef]
  16. N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
    [CrossRef]
  17. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
    [CrossRef] [PubMed]
  18. A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005).
    [CrossRef]
  19. C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).
  20. S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
    [CrossRef]
  21. P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
    [CrossRef]
  22. R. H. Morf and H. Kiess, "Submicron gratings for light trapping in silicon solar cells: a theoretical study," in Proc. Ninth Internat. Conf. Photovolt. Solar Energy, W. Palz, ed., pp. 313-315 (Commission of the European Communities, Brussels, 1989).
  23. H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).
  24. M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
    [CrossRef]
  25. C. Heine and R. H. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476-2482 (1995).
    [CrossRef] [PubMed]
  26. S. H. Zaidi, J. M. Gee, and D. S. Ruby, "Diifraction grating structures in solar cells," in Twenty-Eighth IEEE Photovolt. Spec. Conf., pp. 395-398 (2000).
  27. C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
    [CrossRef]
  28. S. H. Zaidi, R. Marquadt, B. Minhas, and J. Tringe, "Deeply etched grating structures for enhanced absorption in thin c-Si solar cells," in Twenty-Ninth IEEE Photovolt. Spec. Conf., p. 1290 (2002).
  29. F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005).
    [CrossRef]
  30. T. Ogawa and Y. Kanemitsu, eds., Optical Properties of Low-Dimensional Materials (World Scientific, Singapore, 1995).
  31. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, Princeton, NJ, 1995).
  32. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, PA, 1976).
  33. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10,096-R10,099 (1998).
    [CrossRef]
  34. T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
    [CrossRef]
  35. D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
    [CrossRef]
  36. K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).
  37. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
    [CrossRef]
  38. W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961).
    [CrossRef]
  39. C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells," J. Appl. Phys. 51, 4494-4500 (1980).
    [CrossRef]
  40. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  41. J. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  42. E. D. Palik, ed., Handbook of Optical Constants of Solids, vol. 1 (Academic Press, San Diego, CA, 1998).
  43. S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  44. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
    [CrossRef] [PubMed]
  45. S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
    [CrossRef]

2007 (1)

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

2006 (3)

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

2005 (3)

F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005).
[CrossRef]

A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005).
[CrossRef]

C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).

2003 (1)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

2001 (3)

C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

1999 (1)

D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

1998 (2)

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

1996 (1)

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

1995 (1)

1994 (1)

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

1993 (2)

A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
[CrossRef]

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

1990 (1)

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

1989 (1)

H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).

1987 (1)

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

1984 (1)

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

1983 (1)

P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

1982 (1)

E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982).
[CrossRef]

1980 (1)

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells," J. Appl. Phys. 51, 4494-4500 (1980).
[CrossRef]

1966 (1)

K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).

1961 (1)

W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Abrams, N.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Bender, H.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Benkstein, K. D.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Berenger, J.

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

Biswas, R.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Bloch, A.

P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Brendel, R.

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

Brooks, B.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

Bucher, E.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Bur, J.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

Catchpole, K.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

Cody, G.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982).
[CrossRef]

Culshaw, I.

D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Curtis, B.

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

Duan, X.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

Eisele, C.

C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
[CrossRef]

Evrard, O.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Feng, N.-N.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

Fleming, J.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Frank, A. J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Gale, M.

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

Goossens, A.

C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).

Green, M. A.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

Halaoui, L. I.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Heine, C.

Henry, C.

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells," J. Appl. Phys. 51, 4494-4500 (1980).
[CrossRef]

Herzinger, C.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Hetherington, D.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Hirsch, M.

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

Ho, K.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Hong, C.-Y.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

Huisman, C.

C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).

Imada, M.

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Johs, B.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Kiess, H.

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).

Kimerling, L. C.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
[CrossRef]

Kurtz, S.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lewis, B. A.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Lin, S.-Y.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Liu, J.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

Llopis, F.

F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005).
[CrossRef]

Mallouk, T. E.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

McGahan, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Mertens, R.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Michel, J.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

Miguez, H.

A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005).
[CrossRef]

Mihi, A.

A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005).
[CrossRef]

Morf, R. H.

C. Heine and R. H. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476-2482 (1995).
[CrossRef] [PubMed]

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).

Nebel, C.

C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
[CrossRef]

Nijs, J.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Nishimura, S.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Noda, S.

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Nussbaumer, H.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Okano, M.

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

Palmers, G.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Paulson, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Pillai, S.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

Plieninger, R.

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Rohatgi, A.

A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
[CrossRef]

Schoonman, J.

C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).

Sheng, P.

P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Sigalas, M.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smith, B.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Stepleman, R.

P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Stutzmann, M.

C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
[CrossRef]

Szlufcik, J.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Takahashi, S.

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

Tobias, I.

F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005).
[CrossRef]

Trupke, T.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

van de Lagemaat, J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Weber, E.

A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
[CrossRef]

Werner, J.

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

Whittaker, D.

D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Willeke, G.

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

Woollam, J.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982).
[CrossRef]

Yee, K. S.

K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).

Yi, Y.

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

Zeng, L.

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

Zhang, G.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

Zhao, J.

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

Zubrzycki, W.

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006).
[CrossRef]

P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983).
[CrossRef]

H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993).
[CrossRef]

L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006).
[CrossRef]

S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006).
[CrossRef]

IEEE Trans. Attennas Propag. (1)

K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).

IEEE Trans. Electron Devices (4)

N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007).
[CrossRef]

E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982).
[CrossRef]

R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996).
[CrossRef]

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (5)

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001).
[CrossRef]

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961).
[CrossRef]

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells," J. Appl. Phys. 51, 4494-4500 (1980).
[CrossRef]

J. Comp. Phys. (1)

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

J. Electron. Mater. (1)

A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993).
[CrossRef]

J. Phys. Chem. B (1)

A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005).
[CrossRef]

Nature (2)

S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Proc. SPIE (2)

H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).

M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005).
[CrossRef]

Solar Energy Materials and Solar Cells (1)

C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).

Other (17)

J. Gee, "Optically enhanced absorption in thin silicon layers using photonic crystals," in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150-153 (2002).

L. Zeng, Y. Yi, C.-Y. Hong, X. Duan, and L. C. Kimerling, "New Light Trapping in Thin Film Solar Cells Using Textured Photonic Crystals," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2005) Vol. 862.

L. Zeng, P. Bermel, Y. Yi, N. Feng, C.-Y. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Optimization of textured photonic crystal backside reflectors for silicon thin-film solar cells," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2006) Vol. 974E.

D. Fischer, S. Dubail, J. Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, "The micromorph solar cell: extending a-Si:H technology towards thin film crystalline silicon," Twenty-fifth Photovolt. Spec. Conf. p. 1053 (1996).
[CrossRef]

R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany, 2003).
[CrossRef]

K. Wada, L. C. Kimerling, and N. Toyoda, "Back reflector of solar cells," (June 15, 2004). US patent no. 6750393.

L. Feitknecht, J. Steinhauser, R. Schluchter, S. Fay, D. Domine, E. Vallat-Sauvin, F. Meillaud, C. Ballif, and A. Shah, "Investigations on fill-factor drop of microcrystalline silicon p-i-n solar cells deposited onto highly surface-textured ZnO substrates," in Tech. Digest PVSEC-15 (Shanghai, China, 2005).

T. Ogawa and Y. Kanemitsu, eds., Optical Properties of Low-Dimensional Materials (World Scientific, Singapore, 1995).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, Princeton, NJ, 1995).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, PA, 1976).

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10,096-R10,099 (1998).
[CrossRef]

S. H. Zaidi, R. Marquadt, B. Minhas, and J. Tringe, "Deeply etched grating structures for enhanced absorption in thin c-Si solar cells," in Twenty-Ninth IEEE Photovolt. Spec. Conf., p. 1290 (2002).

S. H. Zaidi, J. M. Gee, and D. S. Ruby, "Diifraction grating structures in solar cells," in Twenty-Eighth IEEE Photovolt. Spec. Conf., pp. 395-398 (2000).

ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).

R. H. Morf and H. Kiess, "Submicron gratings for light trapping in silicon solar cells: a theoretical study," in Proc. Ninth Internat. Conf. Photovolt. Solar Energy, W. Palz, ed., pp. 313-315 (Commission of the European Communities, Brussels, 1989).

J. Jackson, Classical Electrodynamics (Wiley, New York, 1999).

E. D. Palik, ed., Handbook of Optical Constants of Solids, vol. 1 (Academic Press, San Diego, CA, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) conventional solar cell design using traditional geometric optics concepts of reflection and refraction to trap light [5]; (b) novel solar cell design using wave optics (photonic crystals) to trap light with higher efficiency [6].

Fig. 2.
Fig. 2.

Illustration of two metallic solar cell designs: (a) a common design with a perfect metal backing and no front surface texturing, which displays only spectral reflection; (b) a metal with periodic grating on the back [2125]. Crystalline silicon is in green, metal in grey, and air is transparent.

Fig. 3.
Fig. 3.

(a) Absorption versus wavelength for a plain 2 µm c-Si thin film with a perfect metal back reflector, compared to the same structure with a metal grating of period p=255 nm and etch depth 67 nm (b) Absorption peak wavelength as a function of peak number — note that peak spacing increases with peak number, implying diffraction is strongest right at the diffraction threshold (here, 920 nm).

Fig. 4.
Fig. 4.

Absorption vs. wavelength for three 2 µm-thick Si cell designs: no back reflector, perfect metal back reflector (Fig. 2(a)), and perfect metal grating with a 2D-periodic “checkerboard” pattern of period 255 nm in both lateral directions and an etch depth of 67 nm (Fig. 2(b)). Note that the narrow peaks seen in Fig. 3 are smoothed out with a moving average that preserves the area under the curve.

Fig. 5.
Fig. 5.

Illustration of three solar cell designs: (a) a simple design with a distributed Bragg reflector (DBR), which displays only spectral reflection [1316] (b) a DBR plus a periodically etched grating, displaying spectral reflection and diffraction [1316], and (c) a photonic crystal consisting of a triangular lattice of air holes, displaying simultaneous reflection, diffraction, and refraction from the photonic crystal layer (based on Ref. 6). Crystalline silicon is in green, low dielectric in yellow, and air is transparent.

Fig. 6.
Fig. 6.

Illustration of the enhancement of the absorption spectrum created when introducing a 1D grating into a DBR (a=165) with period 310 nm and etch depth 67 nm, quantified as the quotient of the absorption with the grating with the absorption without it. Note that the narrow peaks seen in Fig. 3 are smoothed out with a moving average that preserves the area under the curve.

Fig. 7.
Fig. 7.

Efficiency of power generation versus py/px for the geometry described in the text: a 4-bilayer DBR with a 2D “checkerboard” pattern etch (t=2µm, a=165 nm, e=67 nm). Three different values of px are used; as predicted, smaller values of px see peak efficiencies at higher values of py/px .

Fig. 8.
Fig. 8.

Bandstructures of two photonic crystal structures made of circular air holes in a high index medium (n=3.5) and radius r=0.375a, arranged in (a) a square lattice and (b) a triangular lattice. Note that the triangular lattice provides a larger gap between TE modes, which also results in flatter bands.

Fig. 9.
Fig. 9.

Absorption vs. wavelength at normal incidence for four 2 µm-thick Si cell designs with continuous symmetry in at least one dimension: no back reflector, plain DBR, DBR plus 1D-periodic grating, and finally, a 2D photonic crystal of air holes in silicon. The last two designs consist of six complete layers. The DBR plus grating and the photonic crystal-based design yield the highest efficiencies, and have very similar magnitudes.

Tables (1)

Tables Icon

Table 1. Percentage efficiency of various solar cell designs as a function of the number of periods in the z-direction for a plain distributed Bragg reflector (DBR), a DBR with 1D and 2D etched gratings (based on Fig. 5(b)), a triangular photonic crystal of air holes in silicon (based on Fig 5(c)), a woodpile of air trenches in silicon (based on Ref. 43), and an inverse silicon opal (based on Ref. 44).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J ( V ) = 0 d λ [ e λ h c d I d λ A ( λ ) ] e ( n 2 + 1 ) E g 2 k T 4 π 2 h ̅ 3 c 2 exp ( e V E g k T ) ,

Metrics