Abstract

We report on the experimental demonstration of the control of the influence of nonlinearity in fiber-based chirped-pulse amplification (CPA) using active spectral amplitude shaping. By applying a liquid crystal spatial light modulator, the influence of the spectral profile on the recompressed pulse quality is experimentally revealed. The parabolic spectrum is experimentally determined to be very suitable for CPA-systems in which nonlinearity is present. The corresponding nonlinear phase contribution can be efficiently compensated by a conventional grating compressor. In a proof-of-principle experiment using an Yb-doped fiber-CPA-system, control at a B-integral as high as 16 rad is demonstrated. The method allows significant performance improvement of fiber-based chirped-pulse amplification.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    [CrossRef]
  2. D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
    [CrossRef]
  4. F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
    [CrossRef] [PubMed]
  5. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
    [CrossRef] [PubMed]
  6. C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett 89, 111119 (2006).
    [CrossRef]
  7. T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
    [CrossRef]
  8. D. Schimpf, D. Müller, S. Hädrich, T. Schreiber, J. Limpert, and A. Tünnermann, " Control of Nonlinearity in Fiber CPA System by Pulse Shaping," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC2.
  9. D. N. Schimpf, D. Müller, S. Hädrich, F. Röser, J. Limpert, and A. Tünnermann, " High Quality Fiber CPA-System at a B-Integral of 16," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMEE6.
    [PubMed]
  10. G. P Agrawal, "Nonlinear Fiber Optics," 3rd edition (Academic Press, 2001).
  11. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
    [CrossRef] [PubMed]
  12. A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser systems," Opt. Lett. 22, 615-617 (1997).
    [CrossRef] [PubMed]
  13. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 2003).
  14. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
    [CrossRef]
  15. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  16. M. M. Wefers and K. A. Nelson, "Generation of high-fidelity programmable ultrafast optical waveforms," Opt. Lett. 20, 1047-1049 (1995).
    [CrossRef] [PubMed]
  17. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  18. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005).
    [CrossRef] [PubMed]
  19. A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
    [CrossRef]
  20. T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
    [CrossRef]
  21. J. van Howe, G. Zhu, and C. Xu, "Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems," Opt. Lett. 31, 1756-1758 (2006).
    [CrossRef] [PubMed]
  22. G. Zhu, J. Edinberg, and C. Xu, "Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2π," Opt. Express 15, 2530-2534 (2007).
    [CrossRef] [PubMed]

2007 (4)

2006 (4)

J. van Howe, G. Zhu, and C. Xu, "Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems," Opt. Lett. 31, 1756-1758 (2006).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett 89, 111119 (2006).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

2005 (2)

2004 (1)

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

2000 (2)

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

1994 (2)

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
[CrossRef] [PubMed]

1985 (1)

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Braun, A.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett 89, 111119 (2006).
[CrossRef]

Cho, G. C.

Chong, A.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett 89, 111119 (2006).
[CrossRef]

Ditmire, T.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Edinberg, J.

Efimov, A.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Ermeneux, S.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Fermann, M. E.

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Imeshev, G.

Kane, S.

Kannari, F.

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Kolner, B. H.

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

Krause, J. L.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Kuznetsova, L.

Limpert, J.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Linke, S.

Liu, Z.

Mei, B.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Moores, A. D.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Mourou, G.

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Müller, D.

Nelson, K. A.

Norris, T.

Ohno, K

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Okamoto, T.

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Ortac, B.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

Perry, M. D.

Rademaker, K.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

Reitze, D. H.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Röser, F.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
[CrossRef]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Rothhardt, J.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Salin, F.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Schimpf, D.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
[CrossRef]

Schmidt, O.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Schreiber, T.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Shah, L.

Siders, C. W.

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Strickland, D. M.

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

Tanabe, T.

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, (accepted for publication, 2007).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

van Howe, J.

Wefers, M. M.

Wise, F. W.

Xu, C.

Yamanaka, M.

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Yvernault, P.

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32,1551-1553 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Zhou, S.

Zhu, G.

Appl. Phys. B (1)

A. Efimov, A. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, 133-141 (2000).
[CrossRef]

Appl. Phys. Lett (1)

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett 89, 111119 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Tanabe, K Ohno, T. Okamoto, M. Yamanaka, F. Kannari, "Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Opt. Commun. (1)

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Expr. (1)

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Expr. 14, 2715-2720 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Other (4)

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 2003).

D. Schimpf, D. Müller, S. Hädrich, T. Schreiber, J. Limpert, and A. Tünnermann, " Control of Nonlinearity in Fiber CPA System by Pulse Shaping," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC2.

D. N. Schimpf, D. Müller, S. Hädrich, F. Röser, J. Limpert, and A. Tünnermann, " High Quality Fiber CPA-System at a B-Integral of 16," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMEE6.
[PubMed]

G. P Agrawal, "Nonlinear Fiber Optics," 3rd edition (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Influence of self-phase modulation on the quality of the recompressed pulses at the output of a CPA-system. A sech2–profile is assumed for the shape of the input pulse. The transform-limit at the output is given for B=0 rad.

Fig. 2.
Fig. 2.

Schematic of the experimental set-up: PM-fiber, polarization-maintaining fiber; RG, reflection grating; CM, cylindrical mirror; SLM, spatial light modulator; OI, optical isolator; LD, laser-diode for pumping; CBS, chromatic beam-splitter; TGC, transmission grating compressor; OSA, optical spectrum analyzer; AC, autocorrelator

Fig. 3.
Fig. 3.

Shaped Gaussian (a) and parabolic (b) spectrum centered at 1075nm with a 10nm bandwidth (FWHM); (c) and (d) are the corresponding autocorrelation traces at low and higher power levels corresponding to B-integrals of 3.5 rad and 16 rad, respectively. For the Gaussian profile, the FWHM of the autocorrelations were measured to be 450 fs and 580 fs at low and higher power levels, respectively. For the parabolic spectrum, the FWHM were measured to be 420 fs and 410 fs at low and higher power levels, respectively.

Fig. 4.
Fig. 4.

Simulations of the experiment: shaped Gaussian (a) and parabolic (b) spectra centered at 1075nm with a 10nm-bandwidth (FWHM); (c) and (d) are the corresponding simulated autocorrelation traces of the experiment at low (P=250mW) and higher power levels (P=1500mW) corresponding to B-integral values of 3.5 rad and 16 rad, respectively. The input sech2 pulses (P=80mW, f=75MHz, TFWHM=0.18 ps) are spectrally and temporally broadened in the fiber-stretcher (L=100m, β(2)=0.025 ps2/m, β(3)=4·10-5 ps3/m, n2=2.7·10-20 m2/W, MFD=6.7µm (all values for 1060nm)), then, the profiles of (a) and (b) are sliced with an power of 3mW, the shaped pulses are amplified in an active fiber (MFD=4.7µm, L=24m, no dispersion modeled of the 40ps stretched pulses), a 1250 lpmm grating compressor is implemented in a Littrow-configuration for the compression. For the Gaussian, the FWHMs of the autocorrelations (AC) are 450fs (B=3.5 rad) and 500fs (B=16 rad). For the Parabola, the FWHM are about 500fs (B=3.5 rad, B=16 rad). Using zero-phase spectra (a) and (b) (~240 fs and 375 fs FWHM AC, respectively) and a grating-stretcher (1250 lpmm) instead of the fiber-stretcher (while obtaining the same stretch), the results shown in (e) and (f) are obtained, respectively. For the Gaussian the FWHM AC increases from 290fs (B=3.5 rad) to 440 fs (B=16 rad). For a parabolic spectrum, the pulses can be recompressed the transform limit (FWHM AC=375 fs) for both B-integrals.

Fig. 5.
Fig. 5.

Simulation of the spectral phase-profiles for the Gaussian (a) and parabolic (b) spectrum case at the output of the CPA-system corresponding to the profiles shown in Fig. 4(a) and (e), and (b) and (f), respectively.

Metrics