Abstract

Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.A. Thomas, and Y. Fainman, "Optimal cascade operation of optical phased array beam deflectors," Appl. Opt. 37, 6196-6212 (1998).
    [CrossRef]
  2. D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
    [CrossRef]
  3. P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
    [CrossRef]
  4. S.J. Barrington, A.J. Boyland, and R.W. Eason, "Resolution considerations in electro-optic, single interface deflectors," Appl. Opt. 43, 1038-1043 (2004).
    [CrossRef] [PubMed]
  5. D. Djukic, R. Roth, J. Yardley, R. Osgood, S. Bakhru, and H. Bakhru, "Low-voltage planar- waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3," Opt. Express 12, 6159-6164 (2004).
    [CrossRef] [PubMed]
  6. R.A. Meyer, "Optical beam steering using a multichannel lithium tantalate crystal," Appl. Opt. 11, 613-616 (1972).
    [CrossRef] [PubMed]
  7. Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
    [CrossRef]
  8. P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
    [CrossRef]
  9. Qiwang Song, Xuming wang, R.Bussjager, and J.Osman, "Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer," Appl. Opt,  35, 3155-3162 (1996).
    [CrossRef] [PubMed]
  10. Tsuyoshi Tatebayashi, Takashi Yamamoto, and Heihachi Sato, "Electro-optic variable focal-length lens using PLZT ceramic," Appl. Opt. 30, 5049-5055 (1991).
    [CrossRef] [PubMed]
  11. T. Utsunomiya, K. Nagata, and K. Okazaki, "Optical deflector using PLZT ceramics," Jpn. J. Appl. Phys.  24, Supplement 24-2, 281-283 (1985).
  12. T. Utsunomiya, "Optical deflector with tandem electrodes using PLZT ceramics," Jpn. J. Appl. Phys.  28, Supplement 28-2, 164-166 (1989).
  13. D. Goldring, Z. Zalevsky, E. Goldenberg, A. Shemer, and D. Mendlovic, "Optical characteristics of the compound PLZT," Appl. Opt. 42,6536-6543 (2003).
    [CrossRef] [PubMed]
  14. Feng Liu, Qing Ye, Fufei Pang, Ronghui Qu, and Zujie Fang, "Polarization analysis and experimental implementation of PLZT electro-optical switch using fiber Sagnac interferometers," J. Opt. Soc. Am. B 23, 709-713 (2006).
    [CrossRef]
  15. Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
    [CrossRef]
  16. <jrn>. A.L. Glebov, M.G. Lee, Lidu Huang, Shigenori Aoki, Kishio Yokouchi, Masatoshi Ishii, and Masayuki Kato, "Electrooptic planar deflector switches with thin-film PLZT active elements," IEEE J. of Selected Topics in Quantum electronics,  11, 422-430 (2005).</jrn>
    [CrossRef]

2006 (1)

2004 (2)

2001 (1)

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

1998 (1)

1996 (3)

Qiwang Song, Xuming wang, R.Bussjager, and J.Osman, "Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer," Appl. Opt,  35, 3155-3162 (1996).
[CrossRef] [PubMed]

D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
[CrossRef]

P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
[CrossRef]

1993 (1)

P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[CrossRef]

1991 (1)

1990 (1)

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

1972 (1)

An, Dechang

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Bakhru, H.

Bakhru, S.

Barrington, S.J.

Boyland, A.J.

Chiou-hung, Kim

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Corkum, D.L.

P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
[CrossRef]

Djukic, D.

Dorschner, T.A.

P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
[CrossRef]

Dorshner, T.A.

P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[CrossRef]

Eason, R.W.

Fainman, Y.

Fang, Zujie

Hayashi, Kunihiko

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

Hobbs, D.S.

D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
[CrossRef]

Jin-ha, Lin

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Liu, Feng

Lu, Xuejun

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Mcmanamon, P.F.

P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
[CrossRef]

Mcmananmon, P.F.

P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[CrossRef]

Meyer, R.A.

Osgood, R.

Pang, Fufei

Qu, Ronghui

Resler, D.P.

D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
[CrossRef]

Roth, R.

Sato, Heihachi

Tsuyoshi Tatebayashi, Takashi Yamamoto, and Heihachi Sato, "Electro-optic variable focal-length lens using PLZT ceramic," Appl. Opt. 30, 5049-5055 (1991).
[CrossRef] [PubMed]

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

Sharp, R.C.

D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
[CrossRef]

Song, Qiwang

Qiwang Song, Xuming wang, R.Bussjager, and J.Osman, "Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer," Appl. Opt,  35, 3155-3162 (1996).
[CrossRef] [PubMed]

Sun, Lin

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Tatebayashi, Tsuyoshi

Tsuyoshi Tatebayashi, Takashi Yamamoto, and Heihachi Sato, "Electro-optic variable focal-length lens using PLZT ceramic," Appl. Opt. 30, 5049-5055 (1991).
[CrossRef] [PubMed]

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

Thomas, J.A.

Watson, E.A.

P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[CrossRef]

Yamamoto, Takashi

Yamanioto, Takashi

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

Yardley, J.

Ye, Qing

Appl. Opt (1)

Qiwang Song, Xuming wang, R.Bussjager, and J.Osman, "Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer," Appl. Opt,  35, 3155-3162 (1996).
[CrossRef] [PubMed]

Appl. Opt. (4)

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

Lin Sun, Jin-haKim , Chiou-hungJang , Dechang An, and Xuejun Lu, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

P.F. Mcmananmon, E.A. Watson, and T.A. Dorshner, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[CrossRef]

Opt. Express (1)

Optics L ett. (1)

D.P. Resler, D.S. Hobbs, and R.C. Sharp. "High efficiency Liquid-crystal optical phased array beam steering," Optics L ett. 21, 689-691 (1996).
[CrossRef]

Proc. SPIE (1)

Heihachi Sato, Tsuyoshi Tatebayashi, Takashi Yamanioto and Kunihiko Hayashi, "Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices," Proc. SPIE 1319, 493-494 (1990).
[CrossRef]

Proceedings of the IEEE (1)

P.F. Mcmanamon, T.A. Dorschner, and D.L. Corkum, "Optical phased array technology," Proceedings of the IEEE 84, 268-298 (1996).
[CrossRef]

Other (4)

T. Utsunomiya, K. Nagata, and K. Okazaki, "Optical deflector using PLZT ceramics," Jpn. J. Appl. Phys.  24, Supplement 24-2, 281-283 (1985).

T. Utsunomiya, "Optical deflector with tandem electrodes using PLZT ceramics," Jpn. J. Appl. Phys.  28, Supplement 28-2, 164-166 (1989).

D. Goldring, Z. Zalevsky, E. Goldenberg, A. Shemer, and D. Mendlovic, "Optical characteristics of the compound PLZT," Appl. Opt. 42,6536-6543 (2003).
[CrossRef] [PubMed]

<jrn>. A.L. Glebov, M.G. Lee, Lidu Huang, Shigenori Aoki, Kishio Yokouchi, Masatoshi Ishii, and Masayuki Kato, "Electrooptic planar deflector switches with thin-film PLZT active elements," IEEE J. of Selected Topics in Quantum electronics,  11, 422-430 (2005).</jrn>
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

The experimental setup for the optical characteristics measurement of PLZT ceramic.

Fig. 2.
Fig. 2.

The phase shift of PLZT electro-optic ceramic sample versus the applied voltage.

Fig. 3.
Fig. 3.

The measured electro-induced optical loss of PLZT electro-optic ceramic sample.

Fig. 4.
Fig. 4.

The hysteresis characteristic of PLZT electro-optic ceramic sample

Fig. 5.
Fig. 5.

The principle of the electro-optic prism based on PLZT ceramic for different polarization.

Fig. 6.
Fig. 6.

The experiment setup for PLZT EO deflector. OA: optical attenuator, PC: polarization controller, FL: focus lens, PSD: position sensitive detector.

Fig. 7.
Fig. 7.

The deflection angle versus the applied voltage for (a) y-polarization and (b) x-polarization.

Fig. 8.
Fig. 8.

The effect of temperature on PLZT electro-optic deflector for y-polarization.

Fig. 9.
Fig. 9.

The effect of temperature on the hysteresis of PLZT ceramics

Fig. 10.
Fig. 10.

The basic scheme of optical phased-array beam deflector

Fig. 11.
Fig. 11.

The numerical simulation far-field interference pattern of phase-modulation array varies with the applied voltage.

Fig. 12.
Fig. 12.

Numerical simulated deflection angle of phase modulated array varies with the applied voltage.

Fig. 13.
Fig. 13.

The experimental setup.

Fig. 14.
Fig. 14.

The photograph of PLZT phase modulated array structure

Fig. 15.
Fig. 15.

The phase distribution of each phase modulation unit with different applied voltages.

Fig. 16.
Fig. 16.

The beam deflection of phase modulation array with different applied voltage.

Tables (1)

Tables Icon

Table 1. The descriptions of related parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{ n sin ( π 2 α ) = n sin γ n sin ( π 2 α γ ) = sin β ,
β arcsin cos α ( n 2 sin 2 α 2 n Δ n cos 2 α ( n + Δ n ) sin α )
= arcsin [ cos α ( n 2 sin 2 α + n 4 R 33 E 2 cos 2 α ( n 1 2 n 3 R 33 E 2 ) sin α ) ] ,
I ( θ ) = C · EF ( θ ) · AF ( θ ) ,
EF ( θ ) = [ ( w d ) · sin c ( w θ λ ) ] 2 ,
AF ( θ ) = ( sin [ N π ( d λ ) · ( θ θ f ) ] ( N · sin [ π ( d λ ) · ( θ θ f ) ] ) ) 2 ,
θ f = ( Δ φ 2 π ) · ( λ d ) .
Δ φ = φ i + 1 φ i = k · L · ( Δ n i + 1 Δ n i ) = 1 λ π L n 3 R 33 ( E i + 1 2 E i 2 ) ,
V i = i · V 1 , i = 1 N .

Metrics